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Abstract

If firm sizes have a small dispersion (finite variance of sizes), micro-
economic shocks lead to negligible aggregate fluctuations. This has led
economists to appeal to macroeconomic (sectoral or aggregate shocks)
shocks to explain macroeconomic fluctuations. However, the empiri-
cal distribution of firms is fat-tailed: it is fat tailed with an exponent
around 1 (the variance is infinite). As this paper shows, in such a world,
micro fluctuations aggregate up to non-trivial macro fluctuations.
Incidently, the model predicts several other features that are borne

out in the data: It predicts that large countries have smaller volatil-
ity than small countries with a power law relationship identical to
that found for firms (countries with a GDP of S have a volatility pro-
portional to S−α with α ' .15). It delivers the distribution of GDP
fluctuations close to the one found empirically (a modified Lévy distrib-
ution), and the time-series properties (hump-shaped impulse response)
of deviations from trend.
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1 Introduction

This paper will propose an answer to a precise puzzle and a simple origin
for macroeconomic shocks.

The “scaling” puzzle has been found in a series of papers by a team
of physicists and economists, Amaral et al. (1997,1998), Canning et al.
(1998), Lee et al. (1998). In a nutshell, firms and countries have identical,
non-trivial, scaling of growth rate. Amaral et al. study how the volatility of
the growth rate of firms of size1 S changes with S. To do this, one divides
the firms in a number of bins of sizes S, calculate the standard deviation of
the growth rate of their sales σ (S), and plots lnσ (S) vs lnS. One finds a
rougly affine shape, displayed in Figure 1:

lnσfirms (S) = −α lnS + β.

Exponentiating gives:
σfirms (S) ∼ S−α (1)

A firm of size S has volatility proportional to S−α with α = 0.15. This
means that large firms have a smaller proportional standard deviation that
small firms, but this diversification effect is less strong that would happen if
a firm of size S was composed of independent units of size 1 (which would
predict that volatility decreases in S−.5 rather than in S−α = S−.15).

Canning et al. (1999) do the same analyses for country growth rates,
and find2 that countries of GDP of size S have also a volatility of size S−β,
with β = .15. The two graphs are plotted in Figure 1. The puzzling fact is
that α = β.We gather this as:

σGDP (S) ∼ S−α (2)

The equality of the exponent in (1) and (2) could be a fluke. But we view
is a tantalizing fact that could guide us to insights about the origins of
macroeconomic fluctuations.

1The measure of size can be assets, or sales, or number of employees. Those three
measure give similar results.

2Another way to see their result is to regress:

lnσi = −α lnYi + β lnGDP/Capita+γOpenness

+δGvt share of GDP+constant

where σi is the standard deviation of lnYit/Yit−1 and Yi the mean of the Yit. We run this
over the top 90% of the countries to avoid the tiniest countries, and find α = .15 with a
standard deviation of .015.
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Figure 1: Standard deviation of the distribution of annual growth rates (log
log axes). Note that σ (S) decays with size S with the same exponent for
both countries and firms, as σ (S) ∼ S−α, with α = .15. The size is measured
in sales for the companies (top axis) and in GDP for the countries (bottom
axis). The firm data are taken from the Compustat from 1974, the GDP
data from Summers and Heston (1991). Source: Lee et al. (1998).
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This paper will advance a simple reason for the identical scaling (1)-
(2). Modern economies have many large firms. For instance, in the US, the
sales of the top 20 firms account for about 20% of total US GDP. Suppose
that there are idiosyncratic shocks to those firms. They will still add up to
large GDP fluctuations, as those firms are large. Macroeconomic volatility
will have as microeconomic volatility as its orgin. And the identical scaling
(1)-(2) is then readily explained.

This puts more flesh on a “real business cycles” view of macroeconomic
shocks. In a recent report of the McKinsey Institute (2001), 80% of the
productivity growth in the service sector in 1997-2000 were due to one firm,
Wal-Mart. Finland has a boom when one firm, Nokia, expands a lot. The
Californian economy enters in the recession in the mid-90s after a few con-
tracts are lost by firms in the defense industries, and a few big movies are
disappointing. Hence real shock are not a common “productivity shocks”,
but well-defined shocks to individual firms3.

We will present the argument with several degrees of sophistication. The
simplest version of the argument will be developed in section 2. In section
3, we will propose a more in-depth treatment of the process. We will gain
predictions about the shape of the fluctuations of the growth rate of firms
and countries. We will argue that it is in fairly good agreement with reality.
Section 4 will discuss the result, and its link with the literature.

2 The essence of the idea

2.1 Microscopic volatility

Imagine an economy with only idiosyncratic shocks to firms. We study its
aggregate volatility, and call if the “microscopic volatility”. Say that firm i
produces Sit. In a year t, it has a change in size:

∆Sit+1 = Si,t+1 − Sit = σi · Sit · εit+1
where εit+1 are independent random variables with mean 0 and variance 1,
and where σi is the volatility of firm i. For simplicity, we consider assume
that all mean growth rates are 0. The total GDP is:

Yt =
NX
i=1

Sit

3They can propagate to the rest of the economy. There is a very large literature on
those “propagation mechanisms”. This papers focuses on the original shocks, not their
propagation.
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so that:
∆Yt+1
Yt

=
1

Yt

NX
i=1

∆Sit+1 =
NX
i=1

σi · Sit
Yt
· εit+1

so, given that the shocks are εit+1 are uncorrelated:

var
∆Yt+1
Yt

=
NX
i=1

σ2i ·
µ
Sit
Yt

¶2
We define σMicroGDP as the volatility of GDP fluctuations coming from the
idiosyncratic micro shocks:

σMicroGDP =

Ã
NX
i=1

σ2i ·
µ
Sit
Yt

¶2!1/2
(3)

Hence the variance of GDP that arises from purely idiosyncratic shocks¡
σMicroGDP

¢2 of is the weighted sum of the variance of idiosyncratic shocks σ2i ,

with weights equal
³
Sit
Yt

´2
to the squared share of output that firm i accounts

for. We shall use equation (3) throughout the paper.

2.2 The 1/
√
N argument for the necessity of aggregate shocks

We first briefly recall the reason why, in macroeconomics, one usually ap-
peals to common (or at least sector-wide) aggregate shocks. With a large
number of firms N , one could expect the sum of their idiosyncratic shocks
to be vanishingly small. Indeed, take firms of initially idential size Si,t=0 =
Y/N , and identical standard deviation σi = σ. Then (3) gives:

σMicroGDP =
σ√
N
.

This a version of the central limit theorem: the volatility of the average
of N units is of order 1/

√
N . To get an idea of the order of magnitude,

suppose each firm has a production shock of σ = 20% per year, and take
N = 106 firms. We get

σMicroGDP =
σ√
N
=
20%

103
= 0.020%/year
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which is just too small to account for the empirical size of macroeconomic
fluctuations. This is why economists typically4 appeal to aggregate shocks.
But large firms, in modern economic, have a size much bigger than Y/N .
We now explore the consequence of this.

2.3 Scaling and macroeconomic fluctuations when firms are
non-atomistic

Modern economies have large firms. How big are those GDP fluctuations
coming from their idiosyncratic shocks? We start with a rough order of
magnitude. Suppose that those J = 16 top firms have idiosyncratic shocks
with volatility σi = σ = 20%. Say that each of them account for about
Sit/Y t = s = 1.5% of GDP. Neglect the contribution of the other firms to
GDP volatility. We get a total GDP volatility:

σMicroGDP (J) =

Ã
JX
i=1

σ2i ·
µ
Sit
Yt

¶2!1/2
= J1/2σs

= 161/2 · .015 · .20
= 1.2%.

This simple exercise gives just an order of magnitude. Doing the numer-
ical exericise over the firms in Compustat5, we get

σMicroGDP = 1.27%

This suggests that, quantitatively, our mechanism can account fairly large
GDP fluctuations. In this thought experiment, shocks are iid. Macroeco-
nomics has identified a variety of amplification mechanisms. Combining

4One route out of this has been taken by Jovanovic (1987), who observes that the
multiplier is very large (1/ (1− λ) =M ∼ √N , so 1− λ ∼ 1/√N), we get non-vanishing
aggregate fluctuations. The problem is that empirically, such a large multiplier (of order
of magnitude

√
N ∼ 103) is very implausible: the impact of government purchases or trade

shocks, say, would be much higher than we observe. Hence most economists do not see
that “extremely large multiplier” Jovanovic route as plausible.

5This is done with shares Sit/YUS, for the year t = 2000. σi is the historical standard
deviation of the growth rate of sales in firm i. Summing over the top 10 firms gives

σMicroGDP =

Ã
10X
i=1

σ2i ·
µ
Sit
Yt

¶2!1/2
= 0.90%

and over the top 100 firms gives σMicroGDP = 1.15%.
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them with our initial microeconomic shocks, we can predict a large GDP
volatility.

The general argument is the following: suppose that, for whatever reason
(more on this later), it is generally true that the top J firms have an average
size around 1% of GDP.

Proposition 1 Suppose that across countries, the top J firms have each a
share s of GDP, and have a volatility σ, and that the other firms make only
negligible contributions to GDP volatility. Then (i) we get non-vanishing
GDP fluctuations from micro shocks:

σMicroGDP = J1/2sσ.

Proof. This was just show above.
Proposition 1 shows a very simple mechanism to generate non-vanishing

aggregate fluctuations. Microeconomic fluctuations give rise to a non-trivial
macroeconomic volatility.

It turns out that this view readily explains the scaling puzzle.

Proposition 2 In addition to the assumptions of Proposition 1, suppose
that the scaling relation (1) holds within countries, i.e. that a firm of size S
has fluctuations σFirms (S) ∼ S−α. Then we have

σMicroGDP (Y ) ∼ Y −α

so that firms and GDP have similar scaling.

Proof. Equation (1) says that σ (S) = bS−α for some proportionality
factor b. In a country of size Y , each of the top J firms has a size S = sY ,
so that its volatility is σ = b (sY )−α . Then, Proposition 1 gives σMicroGDP =
J1/2s1−αbY −α ∼ Y −α.

One can restate simply the intuition of the proof of Proposition2. Say
that Japan’s GDP is 3 times smaller than the US GDP. The top firms in
Japan, as their typical size is roughly 1% of GDP, have a size typically 3 times
smaller than the size of US firms. The Amaral et al. law σFirms (S) ∼ S−α

implies that their volatility is roughly 3α times (with α = .15) bigger than
the volatility of US firms. Given that GDP volatility is just the outcome of
the volatility of the large firms, Japanese GDP volatility is 3α larger than
US GDP volatility. As Japan is 3 times smaller than the US, the scaling
relationship σGDP (Y ) ∼ Y −α holds.

The reader has now gotten the gist of the argument. We now look deeper
at the mechanism. One payoff will be to get insight into the distribution of
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fluctuations. Still, the economic essence of the mechanism will be that the
top firms will have a non trivial (or the order of magnitude of 1%) of GDP
fluctuations, and the simple derivation in Proposition 2 is the essence of the
mechanism.

2.4 Evidence on the concentration of economic activity

To see the impact of this, consider formula (3) when all firms have the same
volatility σ :

σMicroGDP = σh (4)

h =

Ã
NX
i=1

µ
Sit
Yt

¶2!1/2
(5)

The volatility of GDP is the volatility σ of firms, time the Herfindahl
index h of the economy. The traditional Herfindahl is H = h2, but for
simplicity we will call h the Herfindahl. We condider the following measures:

hS =

Ã
NX
i=1

µ
Salesit
Yt

¶2!1/2
(6)

hW =

Ã
NX
i=1

µ
Workforceit

Total workforcet

¶2!1/2
(7)

Each measure has pros and cons. Throughout we make the approx-
imation that the value added of a firm is proportional to its number of
employees. In the polar case where firms do not use intermediary goods, the
two Herfindahls above are identical. If there are intermediary goods, the hS

exceeds the true Herfindahl of the economy. Take an automobile firm: it
will use rely on suppliers. So a shock to Ford has ripples as a shock to its
suppliers.

We propose a simple economic model to modivate an “economic Herfind-
ahl". Take an economy with initial GDP normalized at 1. Firms have chains
of suppliers. The end firm j creates a value added Vj . Its immediate sup-
pliers creates γVj value added, with γ < 1 , and we assume a self—similar
structure where the supplier of rank i creates a value added

Vji = (1− γ) γiVj . (8)

The chain has a total value added:X
i≥0

Vji = Vj
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Suppose that shock happen for the whole product, with identical standard
deviation σ :

∆Vj,t+1 = σVj,t

As GDP is the sum of value added Yt =
P

j Vj,t, we have:

∆Yt =
X
j

∆Vj,t

¡
σMicroGDP

¢2
= var

∆Yt
Yt

= σ2
X
j

V 2j

so the “economic" Herfindahl is:

hE =

X
j

V 2j

1/2

as this gives σMicroGDP = σhE . The econometrician does not observe directly
hE , as he does not observe the supply chain. Instead, he observes the sales
of firm (i, j), which here take the expression:

Sji =
X
i0≥i

Vj,i0 = γiVj

and its share of value added Vji given in (8). He then forms sales Herfindahls
hS and the workforce Herfindahl hW as in (6)—(7). The next proposition
shows how to infer from them the economic Herfindahl hE.

Proposition 3 Suppose that the econometrician has access only to the sales
Herfindahl hS and the workforce Herfindhal hW . Then the economic Herfind-
ahl follows:

hE =
¡
2hWhS − h2W

¢1/2
. (9)

If firms have the same standard deviation σ, the macroecomic volatility is

σMicroGDP = σhE. (10)

Proof. We have:

h2S =
X
i,j

S2ji =
X
j

¡
γi
¢2
V 2j

=
h2E
1− γ2
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and

h2W =
X
i,j

V 2ji =
X
j

V 2j

ÃX
i

¡
(1− γ) γi

¢2!

=
(1− γ)2 h2E
1− γ2

.

so
hW
hS

= 1− γ.

and

h2E = h2S
¡
1− γ2

¢
= h2S

Ã
1−

µ
1− hW

hS

¶2!
hE =

¡
2hWhS − h2W

¢1/2
. (11)

We observe that as expected hW ≤ hE ≤ hS.
We get our empirical Herfindahls from Worldscope. As Worldscope lists

only the companies listed in the stock market, it will underestimate the true
Herfindahls.

All Countries Rich Countries
hW 3.0 3.4
hS 10.9 19.2
hE 7.5 10.9
σMicroGDP 1.5% 2.2%

Table 1: Workforce Herfindahl, Sales Herfindahl, and economic Herfindahl,
in percentage points, for the year 1999.

Rich countries are the countries with GDP greater than $13,000. Source:
Worldscope.

For the induced GDP volatility, we take σMicroGDP = hEσ, with a volatility of
firms σ = 20%.

Taking a standard deviation σ = 20%, which is rather a lower bound on
microscopic volatility, we get:

σMicroGDP = σhE. (12)
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Table 1 displays the results. We see that the economic herfindahl hE is
quite large: 7.5%. This corresponds to a GDP volatility

σMicroGDP = 7.5% · 0.2 = 1.5%

This is quite in the order of magnitude of GDP fluctuations. We conclude
that GDP micro volatility is quantitatively large enough to explain macro
volatility.

3 The distribution of fluctuations in firms andGDP

growth

This section examines the prediction of the theory for the distribution of
fluctuations in firms and GDP.

3.1 Preliminaries

3.1.1 Zipf’s law for firms

Firm sizes (the sales, assets, or number of employees give the same results)
in our model will be drawn from a power law distribution with exponent ζ
close to 1 (but >1). This fact seems empirically true, as R. Axtell (1991)
shows from a dataset with several million of firms. Figure ?? reproduces his
finding.
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Log frequency ln p (S) vs log size lnS of U.S. firm sizes (by number of
employees) for 1997. OLS fit gives a slope of 2.059 (s.e.= 0.054;

R2 =0.992). This corresponds to a frequency p (S) ∼ S−2.059. Source:
Axtell (2001).

Using the notation p (S) for the frequency of firms of size S, we can do
the regression:

ln p (S) = a− (ζ + 1) lnS
and find anR2 = 0.992, and a coefficient−2.059 (ζ = 1.059), with a standard
error of 0.054. So the probability density is close to p (S) ∼ S−(1+ζ), i.e. it
is Pareto distributed with an exponent ζ = 1.059. In the rest of the paper
we will often take the approximation ζ = 1.

The same phenomenon happens for cities (Zipf 1949), and the size (asset
under management) of mutual funds (Gabaix et al. 2001). Gabaix (2001)
proposes an explanation that generalizes Gabaix (1999) to entities with non-
trivial birth and deaths. For6 the rest of the paper, however, it suffices to
take this power law distribution of the size of firms as having the power
law distribution: p (S) ∼ S−(1+ζ)1S>S0(there must be a lower cutoff S0 for
sizes).

6 In this paper, f (S) ∼ g (S) for some functions f, g, means that the ratio f (S) /g (S)
tends, for large S, to a positive real number. So f and g have the same scaling “up to a
constant real factor”.
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3.1.2 Position of the problem

Amaral et al. and Canning et al. have another tantalizing finding. They
plot the distribution of growth rates ∆ lnSit of firms, and show that, after
rescaling by S−α, firms of different sizes seem to have the same distribution
of growth rate. We reproduce their finding in Figure 2 below. This is another
example of what is called a “universal” relation in economics. We want here
to explain this distribution.

We asked a second question. If the distribution of large firms is Zipf,
rather than the “top firms have a non-infinitesimal fraction of GDP”, do we
get σGDP (S) ∼ S−α as in section 2?

We shall answer both questions at the same time.

3.2 Fluctuations without border effects: Distribution of firm
growth

3.2.1 Distribution of growth rate when the units are Zipf, with
no border effect

So a country of population H has firms drawn from a Pareto distribution
with an exponent ζ > 1. We draw successively S1, ....So there are a number
of N = kH, where k is some unimportant proportionality factor, so that

NX
i=1

Si = Y

where Y , which is proportional to the population H, is the size of GDP.
Each firm i has an idiosyncratic shock, following the scaling law (1):

∆Sit
Si,t−1

= vS−αi,t−1uit (13)

where uit are independent random variables with mean 0 and variance 1, v
is an index of the size of the shocks, and α is a number [0, 1−ζ/2]. The case
α = 0 corresponds to Gibrat’s law, the case α = 1/2 corresponds to perfect
diversification of firms. While several explanations of this fact can be given
(see Amaral et al. 1998, Buldyrev 1997, Sutton 2001), we will not need to
take a stand on them, and we will just take (1) as a given.

We can ask our two questions. When the subunits of an economic system
follow a power law distribution with exponent ζ, and a volatility scaling
σ (S) ∼ S−α,what if the scaling of the aggregate entity? does its distribution
of growth rate look like the empirical one?
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In this section we talk about a “country” composed of many firms. How-
ever, a firm could as well be interpreted a small country, it self composed of
many firms. This will allow us to derive a theory of the fluctuations of firms
growth.

The GDP fluctuations are:

∆St =
NX
i=1

∆Sit (14)

= v
NX
i=1

S1−αi uit (15)

The key remark is that, as S1−αi has power law tails with an exponent
ζ/(1−α) which is< 2, the sumPN

i=1 S
1−α
i uit has non-vanishing fluctuations.

To see that more precisely, we form

mt =

PN
i=1 S

1−α
i uit

N (1−α)/ζ

st =

PN
i=1 Si
N

gt =
mt

s
(1−α)/ζ
t

=

PN
i=1 S

1−α
i uit³PN

i=1 Si

´(1−α)/ζ .
We have the following:

Proposition 4 As N →∞, mt and gt tend in distribution to a symmetrical
Levy stable distribution with exponent ζ/ (1− α) ≤ 2, and st to a constant
real number.

Proof. As P (Si > s) ∼ s−ζ , P
¡
S1−αi > s

¢ ∼ s−ζ/(1−α), so that S1−αi

and S1−αi ui have power law tails with exponent ζ/ (1− α) ≤ 2. So the
Proposition is a direct consequence of Lévy’s theorem saying that (e.g. Dur-
rett 1996, p.153) for a sum of i.i.d. mean 0 random variables Xi, with (for
x → +∞), P (Xi > x) /P (Xi < −x) → 1, and P (Xi > x) ∼ x−ζ

0
for some

k and ζ 0 ≤ 2, then PN
i=1Xi

N1/ζ0

converges to a symmetrical Levy distribution with exponent ζ 0. The fact
about st is just a statement of the law of large numbers, as E [Si] <∞.

The substantive economic interpretation is the following:

14



Proposition 5 GDP fluctuations will be non-vanishing, and have the form:

∆St
St

= vS−α
0

t gt (16)

with

α0 =
α+ ζ − 1

ζ
(17)

and gt is a symmetrical Levy stable distribution with exponent ζ/ (1− α) ≤
2. In particular, the volatility σ (S) of GDP decreases with its size S, in a
power law way:

σGDP (S) ∼ S−α
0

(18)

Proof. Direct, given (14) and the previous Proposition.
The above did not depend on specific values of ζ. The following is a

further consequence of the fact that, empirically, ζ ' 1 (Axtell 2001, Gabaix
2001).

Proposition 6 (Similar scaling of firms and countries). As ζ ' 1 empir-
ically, we have α0 ' α, i.e. firms and countries should see their volatility
scale with a similar exponent:

σFirms (S) ∼ σGDP (S) ∼ S−α

Proof. Direct, from σFirms (S) ∼ S−α, (17) and (18).

3.2.2 Empirical evidence on the Levy distribution of firms fluc-
tuations

It is also of interest to report the empirical distribution of the fluctuations
of the growth of firms (from Amaral et al. 1997). We do this in Figure 2.

The model predicts that the distribution will have the shape of a sym-
metrical Levy distribution with exponent 1/ (1− α) with α = .15. Figure 3
draws this distribution (ln p(x) vs x)

We see that the shapes are both much fatter than a Gaussian. We now
investigate the best fist, assuming that the growth rate follows a symmetrical
Levy distribution with exponent β. The Gaussian benchmark corresponds
to β = 2.

Calling git the growth rate of firm i in year t, we transform γit =
Atgit + Bt such that for all t’s, E [γit] = 0 and Median(|γit|) = 1. We
plot the distribution of γit, which is strinkingly close to a Levy with expo-
nent 1/ (1− α). There are some deviations, for very large |γ|. Hypothesizing
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Figure 2: Empirical distribution of firms size fluctuations The shape is very
similar to the one of the Levy distribution predicted by the model (see Figure
4 below). Source: Amaral et al. (1997).

-6 -4 -2 2 4 6

-4

-3

-2

-1

lnHProbability L

Figure 3: Log of distribution under the null of a Symmetrical Lévy distrib-
ution with exponent 1/ (1− α), with α = .15.
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that the γit, for |γit| ≤ γ follow a Levy with exponent β, we estimate β by
maximum likelihood. We take γ = 10. As P (|γit| ≤ γ) = 0.99 empirically,
this means that we fit the 99% of the points. We do this for each year
separately, which give us a series of β. We find:

Mean of β = 1.28

Standard deviation of βt = 0.11

σ (β) /(Number of years).5 = 0.016.

We conclude that empirically, β = 1.28 with a standard deviation of 0.016.
The prediction is 1/ (1− α) = 1.18 for α = 0.15. The empirical data thus is
fairly close to the theoretical prediction.

3.3 Fluctuations with border effects: Distribution of GDP
growth

This subsection is more technical, and the reader can skip it in the first
reading.

The above theory would not work for GDPs: the reason is that the
typical top firm in a country is only a small fraction (say couple of percentage
points) of a country’s GDP. We need to modify the analysis to incorporate
this fact. We adopt the following representation. The size of firms Si are
drawn from a power law with exponent ζ = 1+ε, but with bounded support
[1,mN ] .The density is assumed to by power law with an exponent ζ in
[1,mN ], i.e.:

f (S) =
ζ

1− (mN)−ζ
S−ζ−1

The total size is:

Y =
NX
i=1

Si

' N/ε (19)

by the law of large numbers.
The object of this section is: what is the distribution of the fluctuations

of such a system? This leads to a new type of distribution, which we call
the modified Levy distribution, which is also “universal”. The major payoff
is that, if the size of the top firm is not allowed to be of more than a few
percentage points of GDP, then the distribution of GDP is quite different:
a generalized Levy distribution whose density is described in (26).
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We define:

VN :=
1

N2−2α

NX
i=1

S2−2αi (20)

where Si is drawn from the above distribution. We study VN in the limit of
large N 0s.We know, from the analysis above, that for m =∞, VN tends to a
Levy distribution with exponent 1/ (2− 2α).We study here its behavior for
m <∞. The tool of choice here is the Laplace transform (using ζ = 1+ ε '
1)

LVN (k) : = E
h
e−kVN

i
= E

"
exp

−k
N2−2α

NX
i=1

S2−2αi

#

= E

·
exp
−k
Nγ

Sγ
i

¸N
with (21)

γ : = 2− 2α

Now

H : = E

·
exp
−k
Nγ

Sγ
i

¸
=

Z mN

1

ζ

1− (mN)−ζ
S−ζ−1 exp

µ−k
Nγ

Sγ
i

¶
dS

=
1

1− (mN)−1

Z mN

1
exp

µ−k
Nγ

Sγ
i

¶
dS

S2

=
1

1− (mN)−1
N−1

Z mγ

N−γ

exp (−kt)
γt1+1/γ

dt by the change in variables S = Nt1/γ

Note that as N →∞,

H ∼ N−1
Z mγ

N−γ

dt

γt1+1/γ

∼ 1

So we use (verifying that H (k = 0) = 1)

H − 1 = N−1
Z mγ

N−γ

exp (−kt)− 1
γt1+1/γ

dt+ o

µ
1

N

¶
= − 1

N
ψ (k) + o

µ
1

N

¶
(22)
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with the new function:

ψm,γ (k) :=

Z mγ

0

1− exp (−kt)
γt1+1/γ

dt (23)

which has a closed form in terms of the Gamma function (analytically con-
tinued for a < 0): with

Γ (a, z) :=

Z z

0
e−tta−1dt

we have:

ψm,γ (k) = −
k1/γ

γ
Γ

µ
−1
γ
, k mγ

¶
−m (24)

Finally, expressions (21) and (22) give, in the limit of large N ’s:

lnLVN (k) = N lnH

= N ln

µ
1− 1

N
ψ (k) + o

µ
1

N

¶¶
= −ψ (k) + o (1)

Thus VN converges in distribution to a well-defined random variable V ,
whose Laplace transform is:

LV (k) = e−ψ(k) (25)

We can also establish the distribution of the fluctuations in Y :

Proposition 7 If the subcomponents cannot have a size bigger that mN ,
for some finite m, the variance of Y scales as:

σ2Y ∼ Y −2αV

where V is a random variable whose Laplace transform is:

LV (k) := E
h
e−kV

i
= e−ψm,2−2α(k)

where ψ (k) is defined in (23)—(24). In the limit m → ∞, V is a totally
positive Levy distribution with exponent 1/ (2− 2α) .
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In particular, all the moments are finite. Indeed one can easily calculate
the cumulants of V (the κi such that − lnLV (k) =

P
κik

i/i!), and find:

κi (V ) =
mγi−1

γi− 1
Recall that e.g. the 4 first cumulants are: (κi)i=1...4 are respectively hV i , varV ,D
(V − hV i)3

E
,
D
(V − hV i)4

E
−3varV , i.e. the mean, variance, skewness and

excess kurtosis.
We can also establish the distribution of the fluctuations in Y :

Proposition 8 If the subcomponents cannot have a size bigger that mN ,
for some finite m, we have, given the standard deviations σi of a country,
the fluctuations are normal

∆Y

Y
=d Y −αV 1/2u

where u is a normal variables. In particular, if m < ∞, all moments are
finite. Given only the size Y of the country, the fluctuations have the density:

fm,α (g) =

Z ∞

0
e−ψm,2−2α(k2/2) cos (kg)

dk

π
. (26)

and all the moments are finite. In the limit m→∞, this distribution tends
to a symmetrical Levy distribution with exponent 1/ (1− α) . In the limit
m→ 0, this distribution tends to a gaussian.

Proof. ∆Y
Y =d Y −αV 1/2u from above. So the Fourier transform of the

fluctuations is:

F (k) = E
h
e−ikV

1/2u
i
= E

h
e−k

2V /2
i

= e−ψ(k
2/2)

so taking the inverse Fourier transform we get (26).
When m→∞,

ψm,γ=2−2α
¡
k2/2

¢ → Z ∞

0

1− exp ¡−k2/2t¢
γt1+1/γ

dt =
k2/γΓ (−1/γ)

21/γγ

= bk1/(1−α)

for some b. The characteristic function is that of a symmetric Levy distrib-
ution.
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When m→ 0,

ψm,γ (k) =

Z mγ

0

1− exp (−kt)
γt1+1/γ

dt

∼
Z mγ

0

kt

γt1+1/γ
dt

=
mγ−1

γ − 1k =
m1−2α

1− 2αk

so that ψm,γ

¡
k2/2

¢ ∼ m1−2α
1−2α k2/2, which shows that ∆Y/Y

³
m1−2α
1−2α

´−1/2
tends to a Gaussian(0,1) distribution.

When m → ∞, there are no restriction on the support of the subunits,
and we get the result in section, where we have a Levy 1/ (1− α) distrib-
ution. When m → 0, even the largest firms are small (they are bounded
above by mY/ hsi). So really even the total variance is the sum of lots of
small variances, the central limit theorem applies, so that the fluctuations
are gaussian. The proof shows that there order of magnitude is m1/2−α.

We choose the value of m the following way. For countries, the empirical
top size of firms is roughly 2%. The top size of firms in the model is m/ hsi
times Y . So for calibrations we can take m = 2% · hsi = 0.5 with hsi = 25
employees.

For firms, the upper bound on the share of the “main unit” is 1, rather.
So we get m = hsi = 25. Numerical simulations that the resulting distribu-
tion is quite close, in the relevant domain, to the theoretical limit m→∞,
so that we get a Levy with parameter 1/ (1− α) .

3.3.1 Empirical evidence

The empirical distribution is plotted in Figure 4. Figure 5 shows the corre-
sponding theoretical plot for the distribution of growth rates. We see that
the two distributions are pretty close. (A formal measure of the distance
will be put in the next iteration of the paper).
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Figure 4: Empirical distribution of GDP fluctuations. Sources: Canning et
al. (1998)
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Figure 5: ln(Probability of a growth rate g) vs g under the null of the
modified Levy distribution predicted by the model (with parameters 2−2α =
1.7 and m = 1).
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4 Discussion

4.1 Extension of the model with feedback

The previous sections established the main theoretical results. Having cali-
bration and greater descriptive realism in mind, we modify the model into:

∆Sit+1
Sit

= λ
∆St
St

+ vS−αi,t−1uit (27)

The interpretation of the λ∆St/St term is that there is a feed-back effect
of past aggregate fluctuations (∆St/St) onto new decisions of firm i. This
leads to a “multipliers” of shocks: a shock to firm j at time t affects .
This feed-back could come from a variety of sources, among which (i) Long-
Plosser (1983) production demand type (ii) Keynesian “aggregate demand”
effects (iii) via the expectations (consumers, or businesses, see the other
firms are doing very well, so they have more optimistic expectations and
spend or invest more).

Having generality in mind, we allow firms specific shocks to be autocor-
related in an AR(1) manner:

uit =
X
s≥0

δsεi,t−s

where the εit are i.i.d.
So aggregate fluctuations are:

∆Yt =
NX
i=1

∆Sit

= λ∆Yt−1 + v
NX
i=1

S1−αi

X
s≥0

δsεi,t−s

thus, with L the lag operator (Lxt = xt−1 for a random process xt) :

∆Yt
Y 1−α

=
v

Y 1−α

NX
i=1

S1−αi (1− λL)−1 (1− δL)−1 εit

and if we look at the fluctuations sampled at horizon H (for instance, if the
underlying unit of action is the quarter, and we look at yearly fluctuations,
H = 4), defining:

∆S
(H)
t = St − St−H

=
¡
1 + L+ ...+ LH−1¢∆St
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we get:

∆S
(H)
t

S1−α
=

v

S1−α

NX
i=1

S1−αi ηit

defining

ηit =
¡
1 + L+ ...+ LH−1¢ (1− λL)−1 (1− δL)−1 εit

So the essence of this algebra is that, like in the simple case of section 2, we
can represent:

∆S
(H)
t

S1−α
= vσgt (28)

with only with a messier expression for σ :

σ2 = var
¡
1 + L+ ...+ LH−1¢ (1− λL)−1 (1− δL)−1 εit

The main point is that, from (28) we get that ∆S/S has the fluctuations
with the shape of g, it scales like S−α0 , and (as is classic in the literature), the
feedback λ can considerably increase the variance of aggregate fluctuations.

Given that the volatility of a firm is var
¡
1 + L+ ...+ LH−1¢ (1− δL)−1 εit,

the ratio

M =

"
var

¡
1 + L+ ...+ LH−1¢ (1− λL)−1 (1− δL)−1 εit
var (1 + L+ ...+ LH−1) (1− δL)−1 εit

#1/2
(29)

plays the role of a “volatility multiplier”. Indeed, we have:

σGDP = MσMicro, with (30)

σ2Micro : =
X
i

σ2i

µ
Si
Y

¶2
(31)

where σi is the volatility of firm i, and Si is size as a fraction of total GDP.
For H = 1, δ = 0, we have

M =
1p
1− λ2

For H À 1/(1− λ), δ = 0, (no autocorrelation of shocks, but essentially all
the propagation via λ∆St/St happens within a period) we have:

M =
1

1− λ
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As mentioned above, the nature of the feed-back leading to the multiplier
could be very diverse: (i) Long-Plosser (1983) production demand type (ii)
Keynesian “aggregate demand” effects (iii) via the expectations (consumers,
or businesses, see the other firms are doing very well, so they have more
optimistic expectations and spend or invest more). We do not want to
take a stand here on the various “amplification mechanisms” proposed in
macroeconomic research. We summarize their reduced form here by M .
Given our earlier Compustat calibration σMicro = 1.3%, it is not difficult
to generate fluctuation σGDP = MσMicro of empirical order of magnitude
around 2%. We only need a multiplier around 1.5.

4.2 Time series properties of the model

Finally, the time-series shape of GDP fluctuations seems to correspond to the
“hump-shaped” empirical one. If we estimated (on artificial data generated
from our model) like e.g. Blanchard-Fisher (1989) an AR(2) for GDP, we
would find the theoretical prediction of:

Yt = 1.34Yt−1 − .41Yt−2 + noise

coefficients that are very close to empirical values of

Yt = 1.25Yt−1 − .35Yt−2

for US GDP.

4.3 Some highly speculative remarks on “fundamental” volatil-
ity

This subsection is highly speculative.
The above theory has the advantage of delivering the identical scaling

of firms and countries. However, the reader might wince. There clearly are
common shocks: oil shocks, world interest shocks, monetary policy shocks,
exchange rate shocks etc. Why would the scaling still be preserved?

We propose the following view. Microeconomic shocks σmicro shocks define
the “fundamental” volatility in the economy. In a large economy, say, the
typical volatility, induced by micro shocks, will be say 2%/year. In a smaller
economy, it will be 4%. Suppose that there is an aggregate shock, like an oil
shock, bad news (a war outside the country), a high monetary policy shock.
In the large economy, people are used to smallish reactions to news, and
react by an amount proportional to 2%. Similarly, in the smaller economy,
people will react by an amount proportional to 4%.
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Call
σNat, GDPc =Mσmicro shocks

the “natural” volatility of the economy. Now, imagine that policy responses
in a given country c are proportional to the “natural” volatility of economy
c, and that policy mistakes are proportional too (policy makers “tremble”
– say because of model uncertainty – by say 20%). This is, the variance
of GDP (the aggregate policy shocks) will be proportional to the “natural”
GDP volatility, i.e.

σPolicy inducedc = kσNat, GDPc

for some constant of proportionality k. Then, the total variance of the
economy will be:³

σTotalc

´2
=

¡
σNat, GDPc

¢2
+
³
σPolicy inducedc

´2
σTotalc =

p
1 + k2Mσmicro shocks (32)

So, as σmicro shocks ∼ Y −α, we would still have σTotalc ∼ Y −α. Put
simply, our “micro” shocks define the “natural” volatility of the economy,
and the “modulus” of the typical reaction to shocks. Policy shocks, reacting
to the natural volatility, are in magnitude proportional to it, and thus the
total volatility is still proportional to the original “micro” shocks. Likewise,
aggregate shocks create a reaction proportional to the natural modulus of
the economy, e.g. a reaction proportional to Y −α.

This hypothesis can be tested (in a next iteration of the paper).

5 Related literature

5.1 Macroeconomics

It is useful to organize the themes. They are:
Macro-from-Micro: Micro shocks are enough to generate Macro shocks.
Equal Scaling: GDP fluctuations scale with size as firms growth fluctu-

ations: σFirms (S) ∼ σGDP (S) ∼ S−α. A weak version of (Equal Scaling)
is:

Negative Slope: GDP fluctuations decline with size. σGDP0 (S) < 0.
A few papers have proposed way to generate macro shocks from purely

micro shocks. The earliest may be Jovanovic (1987), which we discussed in
section. As it relies on an extremely large multiplier (M ∼ N1/2, so that M
has the order of magnitude of 1000), we do not view it as plausible.
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Another route is the one of self-organizing criticality explored in a very
innovative paper by Bak et al. (1993) and Scheinkman, J.A., Woodford
(1994). While we have much sympathy for their approach (which is very
different from ours), their model generates what is probably “too fat tailed”
fluctuations: they have an exponent of 1/3, so that fluctuations don’t even
have a mean, much less a variance. Nirei (2001) proposes a elaborate model
whose spirit is related to Bak et al. 1993, and finds fluctuations with a power
law exponent 1/2. His model has enough free parameter to accommodate (at
the price of a high elasticity of labor supply) any prediction for the scaling
of GDP fluctuations with size.

Horvath (1998, 2000) explores the possibility that sectoral shocks might
be enough to account for GDP fluctuations. It is quite empirical in nature.
This relies on the sparsity of the input-output matrix, but one does not
understand why it is sparse. There is no prediction about Equal scaling or
Negative slope.

Durlauf (1993)’s interesting paper gets some Macro-from-Micro. It does
not generate Equal Scaling or (Negative slope).

Acemoglu and Zilibotti (1997) have a model where large countries have
a smaller volatility. Their mechanism is very different from the present one.
It predicts Negative Slope, but not Equal Scaling. It does not use Macro to
Micro.

5.2 Some other power laws in economics

Incomes (Pareto 18xx).
A number of economic systems appears to follow Zipf’s law, where the

probability that an entity is > S is proportional to 1/S: cities, firms, mutual
funds, web sites. Gabaix (1999) provides an explanation and a survey of the
literature.

Gabaix et al. (2003) present a series of puzzling facts on the distrib-
ution of stock market returns, and an explanation. We have P (rt > r) ∼
P (rt < −r) ∼ r−3 for r between 1 and 80 standard deviations of returns.
Crashes do not appear to be outliers to this distribution. They base their
explanation on another Zipf’s law, for mutual funds: those extreme returns
are due to the trading behavior of large market participants.

6 Conclusion

Obviously there are other, “macro” shocks: monetary policy shocks, policy
shocks, trade (e.g. exchange rate) shocks, and possibly aggregate produc-
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tivity shocks. However, is it possible that, though they are the most visible
ones, they are not the major contributors to GDP fluctuations.

This paper makes a theoretical case for the possibility that purely micro
shocks are an important drivers of GDP fluctuations. It presents a simple
calibration, showing that micro shocks indeed are a quantitatively plausible
source of aggregate fluctuations. The model predicts several other features
that are borne out in the data: It predicts that large countries have smaller
volatility than small countries with a power law relationship identical to that
found for firms (countries with a GDP of S have a volatility proportional
to S−α with α ' .15). It delivers the distribution of GDP fluctuations close
to the one found empirically (a truncated Lévy distribution), and the time-
series properties (hump-shaped impulse response) of deviations from trend.
It also predicts that the distribution of firms growth rates will be close to
a Levy distribution with exponent 1/ (1− α), which appears in pretty good
agreement with the empirical distributions.

The present paper, at least, lays down the theoretical possibility that
those micro shocks are an important, and possibly the major, part of the
origins of business cycle fluctuations.
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7 Appendix A: Lévy distributions

A symmetrical Lévy distribution with exponent ζ has the distribution:

λ (x, ζ) =
1

π

Z ∞

0
e−k

ζ
cos (kx) dk (33)

and the cumulative:

Λ (x, ζ) =
1

2
+
1

π

Z ∞

0
e−k

ζ sin (kx)

k
dk (34)

Its asymptotic property is that P (X > x) ∼ x−ζ . ζ has to be ≤ 2.
Unfortunately, there is not closed form formula for λ and Λ except in

the case ζ = 1 (Cauchy distribution) and ζ = 2 (normal distribution).
Weron and Weron (1995) offer a review of the Monte Carlo generation

of Levy random variables.

8 Appendix B: Calculating the maximum likeli-
hood estimate of the exponent ζ for a truncated
Levy distribution

We take only the observations |xi| ≤M for some M.
The log-likelihood is:

L (x, ζ) = ln
λ (x, ζ)R

|y|≤M λ (y, ζ) dy
= lnλ (x, ζ)− ln (1− 2Λ (−M, ζ))

because λ (x, ζ) is even in x.
We will optimize the log-likelihood over ζ, i.e. find ζ s.t.

1

I

IX
i=1

Lζ (xi, ζ) = 0

with

Lζ (x, ζ) =
λζ (x, ζ)

λ (x, ζ)
+

2Λζ (−M, ζ)

1− 2Λ (−M, ζ)
.

Here

λζ (x, ζ)

λ (x, ζ)
=

R∞
0 e−kζkζ ln k cos (kx) dkR∞

0 e−kζ cos (kx) dk

2Λζ (−M, ζ)

1− 2Λ (−M, ζ)
=

R∞
0 e−kζkζ ln k sin(kM)

k dkR∞
0 e−kζ sin(kM)

k dk
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Because of the computational burden of calculating the above expres-
sions, we use interpolations. Call

h (x, ζ) =
λζ (x, ζ)

λ (x, ζ)
.

We shall fit, for m = 8, and

{ζ0, ..., ζm} = {1, 1.1, ..., 1.8}

a polynomial in ζ of degree m:

bh (x, ζ) = mX
i=0

Ai (x) ζ
i.

To do this, we calculate numerically h (x, ζi) for all x in a very fine grid
7,

and then fit the Ai (x) s.t. bh (x, ζi) = h (x, ζi) for all i = 0, ...,m. This leads
to:

bh (x, ζ) = ¡ζi¢0
i=0,...,m

µ³
ζji

´
i,j=0,...,m

¶−1 ¡
h
¡
x, ζj

¢¢
j=0,...,m

. (35)

So the MLE estimator bζ is the solution of H ³bζ´ = 0, for
H (ζ) :=

1

I

IX
i=1

bh (xi, ζ) + 2Λζ (−M, ζ)

1− 2Λ (−M, ζ)

We calculate the standard error of bζ by Monte-Carlo simulations.
9 Appendix C: Taking into accounts upper limits

on sizes, and the resulting distribution of GDP
growth

As a calibration, take λ = 1/2 (so the pure multiplier is 1/ (1− λ) = 2),
δ = 21/4 = .84 (so the half-life of an idiosyncratic shock is 1 year), and
h = 4 (shocks happen at the quarterly frequency, we look at yearly standard
deviation of GDP). Using equation (29) leads to M ' 2. we get, for the
volatility of annual GDP:

7 In our implementation, Mathematica ’s Interpolate function chose this very fine grid.
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σGDP = 2 · 1.2% = 2.4%.
We conclude that the “micro shocks” model, combined with a multiplier

of only 1/ (1− λ) = 2, generates aggregate shocks of a magnitude compara-
ble to those observed in actual business cycles.

9.1 An abstract calibration

We will take for the distribution of firms, for s ≥ 1 :

P (S > s) = s−ζ with ζ = 1 + ε

so that the minimum size (in number of employees) of a firm is 1, and the
mean size is:

hSi =
Z ∞

1
s · ζ · s−ζ−1ds = ζ

ζ − 1 =
1

ε
+ 1 ' 1

ε

Matching US values of hSi = 21, we get:

ε = .05.

More generally, the theory (Gabaix 2001b) predicts only ε ' 0+, so
there is a certain arbitrariness in the value of ε. We view this values of ε as
reasonable.

Take an economy of the US size. So the total size, of GDP is (in workers
equivalent):

Y = 108.

So the total number of firms will be:

N =
Y

hSi ' εY.

So we find the value of N ' 5 million.
We know that, in the upper tail, the volatility satisfies (??).To extend

this to the lower tail of the distribution, we assume that the volatility satu-
rates (this assumption, as we shall see later, does not matter for our result)
for sizes below a certain S∗ (from Amaral et al. 1997, we know S∗ ≤ 500
employees)

σ (S) = vmax
¡
S−α, S∗−α

¢
(36)
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So the GDP volatility will be (with no multiplier, i.e. M = 1)

∆St =
NX
i=1

∆Sit

=
NX
i=1

Sitσ (Sit)uit

Now, even with the truncation, Sitσ (Sit) is a variable asymptotically equal
to vS1−αit for large Sit’s, so that Levy’s theorem applies, and we have:

∆St ∼ N1−αvgt

with gt a standard Levy with exponent ζ 0 ' 1.15. So the average value of
the fluctuations is:

E

·¯̄̄̄
∆St
St

¯̄̄̄¸
=

N1−αv
N/ε

E [|g|]
= N−αvE [|g|] (37)

We get the following values:
- For ζ = 1.15, and g symmetrical standard Levy with exponent ζ,

E [|g|] = 4.7 (evaluated numerically).
- N = 5 · 106, so that N−.15 = .046
-v is such that a firm of size S = 104 has a volatility around σ =

vS−2 =25%, so that:

v =
.25

(104)−.2
= 0.99

So we conclude:

E

·¯̄̄̄
∆St
St

¯̄̄̄¸
= N−αvE [|g|]

=
¡
5 · 106¢−.2 · 0.99 · 4.7

= 1.7%

So we expect that, even with no multiplier, we will find fluctuations
around 1.7%. This has already the right order of magnitude. With a mul-
tiplier of size M , we will find:

E

·¯̄̄̄
∆St
St

¯̄̄̄¸
=M · 1.7%.
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With α = .15, doing the same calculation (and with E [|g|] = 5.7 for an
exponent of 1.15), we would find:

E

·¯̄̄̄
∆St
St

¯̄̄̄¸
=M · 2.8%.

So here again we do not need a multiplier: M = 1 (i.e. no multiplier) gives
already a large enough aggregate GDP volatility.

10 Appendix D: Herfindahls

If we have, for firm i :
∆Sit/Sit−1 = σiuit

with uit has finite variance, and σi ∼ S−αi .
For GDP we have:

∆Y/Y =
X
i

∆Sit
Sit

Sit
Y

=
X
i

σiuit
Sit
Y

so we should have

var∆Y/Y = V 2 (38)

V 2 : =
X
i

σ2i

µ
Sit
Y

¶2
(39)

If we don’t observe σi perfectly, we can do:

σi = S−αi vi

for some random variable vi, so that:

E
h
(∆Y/Y )2 | (vi)i=1...N

i
=

X
i

¡
S−αi vi

¢2µSit
Y

¶2
= Y −2α

X
i

v2i

µ
Sit
Y

¶2−2α

To analyze the scaling of a sum of random variables
P

i v
2
i

³
Sit
Y

´2−2α
, we

have to consider two cases.
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If the vi have finite variance (e.g. if the growth rate of firms has finite
variance), we get

E
h
(∆Y/Y )2

i
= E

"
Y −2α

X
i

v2i

µ
Sit
Y

¶2−2α#
= Y −2αH2

with

H2 =
X
i

µ
Sit
Y

¶2−2α
the modified Herfindahl(2− 2α).We write this:

σ∆Y/Y ∼ Y −αH. (40)

- If the vi have infinite variance: take the case where v2i are iid a totally
positive Levy with exponent z. Iin the micro theory of the paper (Proposi-
tion 5, interpreted for firms) , we have z = z∗ for

z∗ =
1

2− 2α (41)

We use the fact

Proposition 9 If X1, , ,Xn are iid standard Levy’s with the parameters
(Mi, κ, ζ), and C1, ..., Cn are real, then X =

Pn
i=1CiXi is also a Levy,

with exponent(κ, ζ) and scale parameter:

M =
³X

(CiMi)
ζ
´1/ζ

.

In other terms, if Xi scale like Mi, then X =
Pn

i=1CiXi scales like³P
(CiMi)

ζ
´1/ζ

. Note that we find the well-known result of Gaussian dis-
tributions for ζ = 2.

As an application, if v2i is are iid Levy with exponent z, then (∆Y/Y )
2

can be written:

σ2∆Y/Y = Y −2α
ÃX

i

µ
Sit
Y

¶z(2−2α)!1/z
Λ (42)

where Λ is a Levy with exponent z.
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In the case z = 2 (Gaussian case), then we find (40), and Λ is a
gaussian.In the polar case of the micro-model in the paper, with z = z∗

in (41), then

σ2∆Y/Y = Y −2α
ÃX

i

µ
Sit
Y

¶1!1/z
Λ

= Y −2α · 1 · Λ

(as
P

i Sit/Y = 1) so that, somewhat surprisingly, there is no relation be-
tween σ∆Y/Y and a micro-Herfindahl.

11 Appendix D: Evidence on the scaling law of
growth rates

11.1 Microeconomic scaling

The scaling law says that a unit with size S, in a year t, will have a standard
deviation:

σ (S, t) = standard deviation (lnSt+1 − lnSt | St = S) = btS
−αt (43)

Amaral et al. (1997) present evidence for the scaling law for a particular
year t. We extend here their empirical analysis.

We first proceed with size as a measure of sales. We estimate αt for each
year, and plot in Figure XX the resulting values of αt. We show here that αt
has remained fairly constant throughout the years. Its mean value is 0.188.

Interestingly, the coefficient bt has increased over the year.
We have estimated α for the firms in different SIC 1-digit codes. The

coefficient is constant across 1-digit industries.

12 Appendix E: The maths with thin tailed dis-
tributions of firm sizes

We first briefly recall the reason why, in macroeconomics, one usually ap-
peals to common (or at least sector-wide) aggregate shocks. With about
N = 106 firms, one would expect the sum of their idiosyncratic shocks to
be vanishingly small. Indeed, say that GDP has a size Y , and is composed
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Figure 6: Time series of the scaling exponent αt for the growth of sales. For
each year t we estimate the scaling exponent αt, such that σ (gt | St = S) ∼
S−αt .
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of N firms of size Si,t=0 i.i.d. (For a large economy like the US, the order of
magnitude is N ' 106). GDP is the sum of the total productions, so that:

Yt =
NX
i=1

Sit (44)

Hence the total number of firms is, to a good approximation:

N ' E [N ] =
Y

hSi
Suppose each firm has a production shock of say v = 25% annual, i.e., with
a mean initial size E [Si,t=0] , we have:

∆Sit
Sit

= vεit

where the εit are i.i.d. variables of variance 1. Then, as total GDP is the
sum of individual outputs:we have, for GDP fluctuations:

∆Yt =
NX
i=1

∆Sit = v
NX
i=1

Sitεit

so that

var∆Yt = v2
NX
i=1

var (Sitεit) = v2N

S2
®

and (??) giving Y = N hSi ,

var

µ
∆Yt
Yt

¶
= ν2


S2
®

hSi2N (45)

So aggregate fluctuations σ (∆Yt/Yt) decay in 1/
√
N. The conclusion is that

micro fluctuations (the εit) cannot explain the macro fluctuations: for N =
106, and firms of identical size so that


S2
®
/ hSi2 = 1 and say v = 25% in

annual value, we get:

σ

µ
∆Yt
Yt

¶
=

v√
N
=
25%

103
= .025%/year

which is just too small to account for the empirical size of macroeconomic
fluctuations.
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A multiplier (more later on its later) might increase the impact of each
shock. If the model becomes:

∆Sit
Sit

= λ
∆St
St

+ vεit

the total impact of a unitary shock is

M = 1/ (1− λ) ,

and the total long run annualized volatility is:

σ

µ
∆Yt
Yt

¶
=

1

1− λ
ν


S2
®1/2

hSi√N (46)

Thus a multiplierM = 1/ (1− λ) will increase the predicted fluctuations
from around 0.025%/year to M times that value. One route out of this has
been taken by Jovanovic (1987), who observes that the multiplier is very
large (1/ (1− λ) = M ∼ √N , so 1 − λ ∼ 1/

√
N), we get non-vanishing

aggregate fluctuations. The problem is that empirically, such a large mul-
tiplier (of order of magnitude

√
N ∼ 103) is very implausible: the impact of

government purchases or trade shocks, say, would be much higher than we
observe. Hence most economists do not see that “extremely large multiplier”
Jovanovic route as plausible.

However, formulae (45) and (46) suggest another route. If the distribu-
tion of firms has fat tails, so that


S2
®
= +∞ (at least as a mathematical

approximation), then the formula (45) for σ (∆Yt/Yt) becomes infinite, and
the 1/

√
N degeneracy becomes irrelevant. This route seems a priori promis-

ing, because empirically the size distribution of firms does have fat tails, and
the best statistical description leads to


S2
®
= +∞ . We turn to this, and

its consequences, in the next section.
Figure XXX plots the values of ln bt in (43). One sees that ln bt in-

creases roughly linearly, at a mean rate 2.5% per year. This increase in
microeconomic volatility is quantitatively identical if one take the number
of employees as a measure of size.

13 Appendix F: A simple model illustrating the
mechanics of the paper

The paper presents a mechanism, that emerge from a variety of economic
structures. We present here one possible type of model that generates the
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mechanism. Markets are competitive. Firm i has a capital Kit. It invests
in a technology with random productivity Ait such that E [Ait] is constant
across i’s and

σ (Ait) = bK−α
ti (47)

A variety of mechanisms (e.g. Amaral et al. (1998), Sutton (2001)) can
generate the microeconomic scaling (47). They typically consider that the
firm of size S is made up of N smaller units, with N ∼ Sβ, wich generates
(1) and (47) with α = β/2. Capital is fully reinvested, so that:

Ki,t+1 = Ai,t+1Kt (48)

GDP is simply:
Yt =

X
i

Ai,tKt−1.

Adding labor does not change the conclusion of this paper. Suppose
that the production function is Ai,tF (Kti, Lti), with constant returns to
scale. Risk neutral firms maximize

max
Lit

E [Ait]F (Kti, Lti)−wtLti

the quantity of labor chosen Ltiwill be Lit = λtKit, for a factor of propor-
tionality λ, so that we will have:

Ki,t+1 = Ai,t+1F (Kit, λtKit)− wtλtKit = (Ai,t+1F (1, λt)− wtλt)Kit

so that the equation of motion follows the same structure as (48), with
random productivity:

A0it = Ai,t+1F (1, λt)− wtλt.

GDP is
Yt =

X
i

Ai,tKt−1F (1, λt−1) .

so that it evolves as the stochastic sum in the paper.
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