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Abstract

The city size distribution of many countries is remarkably well approximated
by a Pareto distribution. We study what constraints this regularity imposes on
standard urban models. We find that under general conditions urban models
must have (i) a balanced growth path and (ii) a Pareto distribution for the un-
derlying source of randomness. In particular, one of the following combinations
can induce a Pareto distribution of city sizes: (i) preferences for different goods
follow reflected random walks, and the elasticity of substitution between goods
is 1; or (ii) total factor productivities in the production of different goods follow
reflected random walks, and increasing returns are equal across goods.
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1 Introduction

A remarkable empirical regularity is that the city size distribution in many countries
is well approximated by a Pareto distribution. This claim is so widely accepted
among social scientists that it has gained the status of a law, Zipf’s Law, or a rule,
the Rank-Size Rule1 ,2. It has also inspired extensive research mainly in the fields of
urban economics and regional science.
The literature, however, has been unsuccessful in providing a satisfactory economic

explanation for the regularity. This is at least the conclusion obtained by leading
researchers on the topic: “at this point we have no resolution to the explanation of
the striking regularity in city size distribution. We must acknowledge that it poses
a real intellectual challenge to our understanding of cities...” (Fujita, Krugman and
Venables [1999, p. 225]); and “It is therefore no surprise that we still lack such a
model... Yet this turns out to be a real embarrassment, because the rank-size rule is
one of the most robust statistical relationships known so far in economics” (Fujita
and Thisse, [2000, p. 9]).
The objective of this paper is to find restrictions that standard urban models must

satisfy in order to generate Pareto distributions for city sizes, and then use these
restrictions to provide economic explanations for the regularity. The restrictions
are obtained in a two-step process. The first step characterizes Markov processes
that can preserve Pareto distributions. The second step uses this characterization to
find restrictions on preferences, technologies, and on the stochastic properties of the
exogenous driving forces in a standard urban model.
As expected, there are many Markov processes that can preserve Pareto distribu-

tions. Among them are the well-known cases of processes that satisfy Gibrat’s law,
or the law of proportionate effects3 (Champernowne [1953], Gabaix, [1999]). More
importantly, they also include non-proportional growth processes where size affects
growth.
The important result is that, under plausible assumptions about population growth

and the number of cities, only a very specific Markov process can support Pareto

1The observation is usually associated to Zipf [1949], but Auerbach [1913] seems to be the first
to uncover it. The large literature on the topic includes, among others, Rosen and Resnik [1980],
Carroll [1982], Eaton and Eckstein [1997], Brakman et al. [1999], Roehner [1995], and Gabaix [1999],
Ioannides and Overman [2000], and Soo [2002].

2Pareto distributions are defined as

Pr(X ≤ x) = 1− (x/a)−δ , x ≥ a.

Zipf’s law states that the city size distribution satisfies δ = 1. The Rank-Size rule uses the previous
formula to provide a deterministic description of the data rather than a probabilistic description.

3Gibrat’s law describes processes that are size independent in the sense that the expected growth
rate and the variance of the growth rate are independent of the position of the random variable.

2



distributions. Such process is proportional in mean but not in variance. The non-
proportionality of the variance is required to preserve the Pareto exponent. In partic-
ular, Pareto distributions with larger exponents (more unequal distributions) require
more volatile growth processes. This provides a new interpretation for the Pareto
exponent, one that complements Simon [1955] who links the Pareto exponent to the
fraction of new agents in the system (new cities).
The finding also allows to generalize other important result in the literature. Pre-

vious studies (Champernowne [1953], Simon [1955], Gabaix [1999].) have shown that
proportional growth can explain Zipf’s distributions -Gibrat’s law implies Zipf’s law-.
This paper shows the reverse: under plausible conditions, Zipf’s law implies Gibrat’s
law.
Armed with this statistical characterization, the paper moves to study under what

conditions a standard urban model with localization economies can generate Pareto
distributions for city sizes. The key statistical result employed is that all cities must
have the same expected growth rate. This property is equivalent to require the model
to have a balanced growth path. There are three main results in the second part
of the paper. First, only under one of the following three conditions city growth is
independent of city size: (i) the elasticity of substitution between goods is equal to
one; (ii) externalities are equal across goods; or (iii) a knife-edge condition on prefer-
ences and technologies is satisfied. Second, under general conditions, the steady state
distribution of the fundamentals, preferences and technologies for different goods,
must be Pareto too. Third, the Pareto exponent depends on the degree of increasing
returns in the economy and the elasticity of substitution between goods.
The statistical and economic characterization obtained in the paper can then be

easily used to provide economic explanations for the observed distribution of city
sizes. We provide at least two explanations. A standard urban model with localization
economies can generate a Pareto distribution of city sizes if (i) preferences for different
goods follow reflected randomwalks and the elasticity of substitution between goods is
1; or (ii) total factor productivities in the production of different goods follow reflected
random walks and increasing returns are equal across goods. These explanations are
the first in the literature to be fully consistent with increasing returns to scale, a
central component in models of agglomeration.
To summarize, the main contributions of the paper are the following: (i) it pro-

vides general conditions under which standard urban models can generate Pareto
distributions for city sizes; (ii) it provides the first fully stochastic urban models in
the literature based on increasing returns that can replicate Pareto distributions for
city sizes; (iii) it characterizes a very parsimonious stochastic process that can pre-
serve Pareto distributions; (iii) it provides statistical and economic interpretations for
the Pareto distribution of city sizes.
The paper is divided into 5 sections. Section 2 reviews the evidence and the

related literature on the topic. Section 3 sets up the statistical model and obtains
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the statistical results of the paper. Section 4 sets up an urban model and uses the
statistical results to characterize preferences, technologies and the random properties
of the model required to account for the evidence. Section 5 concludes.

2 Evidence and Related Literature

There is an abundant empirical literature that supports the claim that the city size
distribution is well approximated by a Pareto distribution. The original evidence is
presented by Auerbach [1913], and Zipf [1949]. A classical empirical paper is Rosen
and Resnik [1980] who studied a cross section of countries. They find that the Pareto
coefficients differ across countries, ranging from 0.80 to 1.96. Soo [2002] updates
Rosen and Resnik using recent data and confirm their claims. Eaton and Eckstein
[1997] analyses the cases of France and Japan, Brakman et al. [1999] the Netherlands,
Roehner [1995] several countries, and Ioannides and Overman [2000] study in detail
the case of the United States. These exercises usually find the Pareto exponent for
the U.S. close to 1, but different from 1 for most other countries.
Several probabilistic and few economic models have been proposed to account for

this evidence. Among the most prominent probabilistic models are the ones by Cham-
pernowne [1953], Simon [1955], Steindl [1965], and more recently, Gabaix [1999]. The
fundamental insight obtained by these authors is that Gibrat’s law, or proportional
growth, can lead to Pareto distributions. More precisely, if a stochastic variable fol-
lows a growth process that is independent of the position of the variable, then its
limit distribution can be Pareto, a result first established by Chapernowne. Simon
generalizes the result showing that proportional growth can explain many different
skew distributions, such as log-normal, Pareto and Yule. He also derives a very simple
formula linking the Pareto exponent with the underlying growth process. It is equal
to 1

1−π , where π is, in our case, the probability that new cities emerge. Gabaix [1999]
establishes that Gibrat’s law can lead to Zipf’s distributions if the number of cities is
constant, but if new cities emerge then only the upper tail of the distribution is Zipf.
In contrast to the success of this probabilistic approach, economic models have

failed to match the evidence. Krugman [1996] and Fujita et al. [1999] conclude that
none of them can properly explain the data. Most city models are deterministic which
cannot account for the observed mobility of cities. In addition, these models usually
predict that cities attain an equilibrium size, as a result of the interplay between
positive and negative externalities. The models also predict that urban growth mainly
occurs through the increase in the number of cities. This prediction conflicts both
with the idea of proportional growth, as older cities must grow at a lower rate, and
with the observation that the number of cities stabilizes as the urban system matures
(Eaton and Eckstein, [1997]).
Some success in matching the evidence is obtained in two recent works by Eaton
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and Eckstein [1997] and Black and Henderson [1999]. They offer deterministic urban
models that display a steady state in which all cities grow at the same rate. These
works, however, require unappealing assumptions on the primitives of their models.
Eaton and Eckstein require a discount factor equal to zero, and Black and Henderson
need unusual functional forms for preferences and technologies. This paper provides
clear, simple and general conditions.
Another drawback in the current literature is that it cannot account for Pareto

exponents different from 1 when the number of cities remains constant. These cases
seem relevant in light of the evidence presented by Rosen and Resnik [1980], and the
fact that new cities hardly arise in many of these countries. This paper offers an
explanation for these cases.

3 Reduced Form Models

We interpret the city size distribution evidence as describing an urban system that
is evolving along a balanced growth path. This section seeks to characterize Markov
processes that can preserve such equilibrium path. Readers can jump to the next
section without major disruption.

3.1 Basic Assumptions

Consider an economy composed by a continuum of cities (locations) of size St, and a
total population, Nt, that grows continuously over time at the exogenous compound
rate γ ≥ 0, i.e., Nt = eγt. Let Xt(i), i ∈ [0, St] be a collection of city sizes, defined as
population size, at time t.
The first assumption states that the urban system evolves via the intensive margin,

i.e. larger cities, rather than the extensive margin, i.e. more cities. It is consistent, for
example, with evidence that suggests that the number of cities remains roughly con-
stant in mature urban systems like Japan, France, and England (Eaton and Eckstein,
1997).
Assumption 1: St = S.
This assumption is convenient but it is not essential. The results still hold as long

as St grows slowly4.
The second assumption states that Xt(i) follows a particular Markov process. This

is in fact a statement about the equilibrium dynamics of an unspecified economic
model. The next section studies an economic model with this reduced form, but the
results in this section apply to any economic model with this reduced form.
Assumption 2: Xt(i) is an i.i.d diffusion process with stationary transition. In

4The results of Gabaix [1990, section III.3] about new cities apply for our model. The idea is
that urban system still grows mainly in the intensive margin than the extensive margin.
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particular, the drift, µ(x), and the diffusion, σ2(x), coefficients only depend on the
size of Xt(i) but not on its identity, i.
This assumption has several components. First, it asserts that the dynamics of

Xt(i) depend only on the current position of Xt(i). These dynamics could in principle
depend on the whole distribution of city sizes at time t. However, such distribution
is constant along a balanced growth path since we assume no aggregate shocks and
S large (a continuum). It could also depend on the current realization of the idiosyn-
cratic shock. The assumption of i.i.d shocks is made mainly for tractability, and we
conjecture that the results do not depend critically on this assumption.
Assumption 2 also states that the identity of a city plays no role on its dynamics.

This seems clearly required if one hopes to find a general theory of cities. The
alternative is somewhat arbitrary. One would need to pose a theory for each city
and explain why and how cities move across the distribution. Given that identity is
irrelevant, denote Xt the size of a representative city.
Finally, assumption 2 asserts that Xt is a diffusion. This assumption dramatically

simplifies the problem. Suppose momentarily that population is constant and Xt

follows a discrete Markov process described by the following Markov chain

Π =


π00 π01 π02 .
π10 π11 π12 .
π20 π21 π22 .
. . . .

 ,
where πij is the transition probability from state i to state j. The goal is to char-

acterize Π given that p = pΠ holds, where p is the density of the Pareto distribution.
Π cannot be fully identified with only this information since the dimensionality of Π
is the square of the dimensionality of p.
A way to reduce the number of unknowns is to assume that X is “continuous”

in the sense that it can only move to states adjacent to the current position in one
period. In that case, Π would look like

Π =


1− θ0 θ0 0 0 .
φ1 1− θ1 − φ1 θ1 0 .
0 φ2 1− θ2 − φ2 θ2 .
0 0 φ3 1− θ3 − φ3 .
. . . . .

 ((*))

Imposing this type of continuity dramatically reduces the dimensionality of the
problem. The number of unknowns in Π is now (2D − 1), where D2 is the dimension
of Π, rather than D2 −D. On the other hand, there are D − 1 equations (obtained
from the relation p = pΠ), so that at most θ(·) can be solved as function of φ(·),
or vice versa. Alternatively, one can use the analytical probabilities to compute the
conditional mean and variance of the growth rate of X, µ(·) and σ2(·), and solve
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the problem in terms of µ(·) and σ2(·). Taking proper limits in time and space, the
previous procedure is equivalent to assume that the Markov process is a diffusion
(Cox and Miller [1965, p. 213]).
Are city size dynamics reasonably well described by diffusion processes? On purely

theoretical grounds, continuity may be problematic because economic models predict
discontinuities, particularly when new cities arise in the urban system. For example,
in Henderson [1974, p. 88] new cities arise as positive mass of workers that move
from old cities. This creates discontinuities in the size of existent and new cities.
Similarly, new cities can also emerge from discontinuous —catastrophic— bifurcations
(Fujita and Mori [1997]). However, these considerations suggest that discontinuities
are unimportant in mature urban systems, as the ones we dealing with, where new
cities play only a marginal role.
The assumption of continuity could also be justified on empirical grounds. One

can construct a transition matrix using data from a particular country, and compare
it with the theoretical one illustrated by (*). Figure 1 shows a transition matrix
between 1980 and 1990 for U.S. cities computed by Ioannides and Dobkins [2000]. It
has the required diagonal form, which supports the idea that city size changes slowly
over time, and that major jumps are infrequent. Matrices from France and Japan
also exhibit similar shape (See Eaton and Eckstein [1997]).

3.2 Steady State Distribution

Let p(x0, x; t) be the probability density function of xt, given that at an earlier time,
t0, x = x0. The Forward Kolmogorov Equation - FKE - describes the motion of
p(x0, x; t)

5 as

∂

∂t
p(x0;x, t) =

1

2

∂

∂x2
£
x2σ2(x)p(x0;x, t)

¤− ∂

∂x
[xµ(x)p(x0;x, t)] .

Along a steady state this equation becomes

∂

∂t
p(x, t) =

1

2

∂

∂x2
£
x2σ2(x)p(x, t)

¤− ∂

∂x
[xµ(x)p(x, t)] , (1)

where p(x, t) is the unconditional probability density.
The next assumption incorporates the evidence on city size distribution into the

model. It states that the unconditional probability distribution of city sizes is Pareto

5The FKE is almost an exact characterization of the conditional probability for diffusion pro-
cesses. It is not a complete characterization for cases where a positive probability mass can be
accumulated on a boundary, i.e., when boundaries are accessible. In our case, boundaries are not
accessible by assumption: we know that the probability distribution has no positive mass at any
point. Feller [1952] is the classic on the topic. Bharucha-Reid, [1960, pages 142-47] provides a
pedagogical introduction.
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at all times. Let P (x, t) denote the probability distribution of X at time t, and p(x, t)
its corresponding density.
Assumption 3: P (x, t) = 1− xδltx

−δ and

p(x, t) = δxδltx
−(1+δ), (2)

for t ≥ 0, where xlt = xl0e
γt, δ > 0, and xl > 0.

Note that the minimum city size, xlt, increases at the rate of population growth, γ.
Thus, population growth shifts the distribution toward larger values. This is required
in order to preserve a stationary distribution for the relative city sizes, xt/Nt, as
observed in the data. Using Equation (2) into (1), one obtains the first restriction on
µ(x) and σ(x).

3.3 Equilibrium

The Markov process governing xt is really a closed-form solution of an underlying
economic model. An equilibrium requirement in such model is that the total popula-
tion across cities equals to the total urban population available. Alternatively, cities
must grow in average at the same rate as the population. Since the number of cities
is large (a continuum), this requirement can be stated as follows

Et[x (µ(x)− γ)] = 0 for all t, (3)

where Et[·] is the expected value with respect to P (x, t). Intuitively, this condition
states that on weighted average cities must grow at the same rate as the urban popu-
lation. There are two key considerations regarding this equation. First, the expected
value is with respect to P (x, t), a time-dependent distribution when γ > 0; Second,
the previous condition must hold for all t.
Equations (1), (2) and (3) are the only three restrictions available to identify µ(x)

and σ2(x). The following is the equilibrium (solution) concept:

Definition 1 A diffusion process, described by µ(x) and σ2(x), supports a Pareto
equilibrium if it satisfies equations (1), (2), and (3).

It turns out that if γ > 0, µ(x) and σ2(x) can be sharply identified. In that case,
P (x, t) is non-stationary and equation (3) provides constraints for every period t. This
is equivalent, as shown below, to have constraints for every x. Thus, (3) provides the
continuum of equations needed to fully solve the system in this case. In contrast, if
γ = 0, P (x, t) is stationary and equation (3) becomes E[xµ(x)] = 0. This equation
provides only a single constraint on µ(x).
We consider separately the cases γ = 0 and γ > 0. The first case represents

an economy without population growth, or alternatively, an economy with positive
population growth but in which the relevant city size, the one that determines µ(x)
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and σ(x), is the size of the city relative to the total population. The second case is
more plausible: population grows and the relevant scale of the city is its absolute size.

3.4 The Stationary Case: γ = 0

Substituting (2) into (1) and dropping time subscripts produces

1

2

∂

∂x2
£
x1−δσ2(x)

¤− ∂

∂x

£
µ(x)x−δ

¤
= 0 (4)

Integrating this equation once and solving for µ(x)6, one obtains

µ(x) =
1

2

·
x
∂

∂x
σ2(x) + (1− δ)σ2(x) +Axδ

¸
, (5)

where A is a constant of integration. This equation characterizes the drift, µ(x), as a
function of σ2(x). Substituting this result into (3) produces, after some simplifications
(see Appendix),

σ2(xl) = Axδl + xδ−1l lim
x→∞

x
£
x−δσ2(x)−A

¤
. (6)

The following is the first main result of the paper.

Proposition 2 A diffusion process with drift µ(x) and diffusion σ2(x) supports a
Pareto equilibrium if and only if σ2(x) is a positive differentiable function satisfying
(6), and µ(x) satisfies (5).

Proof. For sufficiency, notice that equations (1), (2), and (3) are satisfied once
(5) and (6) are used. Necessity has already been established since (5) and (6) were
obtained from (1), (2), and (3).
A more parsimonious characterization could be obtained if A = 0. This is the case

if σ2(x) does not increase too fast with x.

Assumption 4: limx→∞
σ2(x)
xδ

= 0.

Lemma 3 Suppose (5), (6) and Assumption 4 hold. Then µ(x) and σ2(x) in Propo-
sition 2 satisfy

µ(x) =
1

2

·
x
∂

∂x
σ2(x) + (1− δ)σ2(x)

¸
, (7)

σ2(xl) = xδ−1l lim
x→∞

£
x1−δσ2(x)

¤
(8)

Proof. Since the left-hand side of equation (6) is finite, limx→∞
£
x−δσ2(x)−A

¤
=

0, or A = limx→∞ x−δσ2(x) = 0 (by Assumption 4).

6Since our interest is to find alternative forms in which scale economies are consistent with the
evidence, we assume µ(x) 6= 0 when we integrate.
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Thus, equations (7) and (8) fully characterize the diffusion processes consistent
with Pareto distributions under the additional Assumption 4. A particular process
that satisfies this Lemma is µ(x) = 0 and σ2(x) = βx1−δ. Notice that a process that
satisfies Gibrat’s law does not satisfies this condition unless δ = 1.
The following lemma characterizes a very general class of diffusion process that

can support a Pareto equilibrium.

Lemma 4 Let m(x) be a function that satisfies m(xl) = 0, and limx→∞ x1−δm(x) =
0. Then, a diffusion process with drift µ(x) = 1

2
[xm0(x) + (1− δ)m(x)] and variance

σ2(x) = βx1−δ +m(x) can support a Pareto equilibrium.

Proof. This process satisfies the conditions of Proposition 2.
The next Lemma follows from equations (7) and (8) for large x:

Lemma 5 (i) If δ = 1, then very large cities share the same the diffusion coefficient
(variance) and their mean growth is zero; (ii) If δ < 1 then variance must eventually
decrease with size; (ii) if δ > 1 variance must eventually increase with size.

3.4.1 Zipf’s Law

Consider the particular case of Zipf’s law. In that case δ = 1, and (7) and (8) read

µ(x) = xσ(x)σ0(x)

σ2(xl) = lim
v→∞

σ2(v)

These two equations provide a very parsimonious characterization of the diffusion
processes associated to an invariant Zipf distribution.

Proposition 6 (Zipf distribution) Suppose δ = 1 in Proposition (2). Then, µ(x) Q 0
if and only if σ0(x) Q 0. (If large cities exhibit more stable growth, then they also must
exhibit lower mean growth.)

Thus, the fact that cities are distributed Zipf give the following strong predictions
about city growth: (i) growing cities must have more unstable growth; (ii) more
stable cities must be decaying cities. Hence, Zipf’s law translates into a surprising
interpretation of city growth. High growth is necessarily risky, and low growth is
stable.

3.5 The Non-Stationary Case: γ > 0

In this case one can identify a unique diffusion process that supports Pareto Equilibria.
The following is the second main result of the paper.
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Theorem 7 Let x follows a diffusion process satisfying equations (1), (2) and (3).
Then, µ(x) = γ and σ2(x) = Axδ−1 + Bxδ for all x, where A and B are positive
constants.
Proof. (See Appendix)

To gain some understanding about why expected growth must be equal for all
possible sizes, consider the stylized case in which limx→∞ µ(x) = µ, i.e., very large
cities all grow at the same rate, µ. Suppose also that there are only three types
of cities: small (S), medium (M), and large cities (L). The urban system initially
includes all three types of cities, but small and medium cities eventually become large
as population grows. Thus, all cities eventually grow at the rate µ, which implies, by
equation (3), that µ = γ. In words, large cities must grow at the same rate as the
urban population. But this implies that µ(x) = γ for all x too. Why? Because from
the previous discussion µ(L) = γ so that medium cities must grow also on average
at the rate γ in order for (3) to hold when only medium and large cities coexist. By
backward induction, it also follows that µ(S) = γ since (3) must also hold when the
three types of cities coexist.
Theorem 7 provides also a functional form for the diffusion coefficient. If B > 0,

this coefficient eventually increases with size, a prediction that conflicts with the
economic intuition: one would expect growth in large cities to be more stable as large
cities are more diversified. On this basis, one may choose B = 0 as the plausible
option.
The result about the variance has a straightforward intuition, at least for the

case B = 0. Notice first that δ measures how spread the Pareto distribution is, or
alternatively, the degree of inequality. For example, δ = ∞ represents an extremely
even distribution as all cities have equal size. The other extreme, only one city
hosting all the population, occurs when δ = 0. It seems natural to expect that a more
unequal distribution of population would arise from a more unequal growth process.
For example, a process such that small cities face higher risks than large cities, but the
same expected growth. This is what Theorem 7 states. It says, among other things,
that the growth process associated to a Pareto distribution with δ < 1 requires that
smaller cities face more unstable growth than larger cities. The opposite occurs if
δ > 1.

3.5.1 IMPLICATIONS

Theorem 7 provides a very parsimonious characterization. One could have expected a
richer class of Markov processes, even among the diffusion processes, to be consistent
with the evidence. However, the interplay between a growing population and the
requirement of a stationary growth process singles out a very parsimonious Markov
process.

11



The result regarding the expected growth rate is strong: mean city growth cannot
depend on city size. This single finding casts serious doubts on most economic models
of cities. In particular, models where cities attain an optimal size as a result of the
trade-off between positive and negative spillovers. City growth rate in these models
depends on whether the city has reached its optimal size or not. In the extreme case,
a city stops growing once it attains that size.
The second component of the Theorem shows that the scale of a city can affect the

stability rather than the mean of its growth process. The result about the variance,
σ2(x) = Axδ−1+Bxδ, is an important generalization with respect to previous results.
In particular, this new characterization can account for the view held by some authors
who argue that larger cities must display more stable growth just as a matter of
diversification (Fujita et al. [1999, p. 224]). According to Theorem 7, such belief can
be true but only if the exponent in the Pareto distribution is below 1. The evidence
provided by Rosen and Resnik [1980, Table 3], suggests that this is in fact the case
for many countries.
For countries for which Zipf’s law holds, our result is quite surprising. Gibrat’s

law must hold there. Neither the mean nor the variance of growth can depend on
size.
Theorem 7 also leaves a question. If δ > 1, as the evidence suggests is the case

for some countries, then the variance of growth must eventually increase with size, a
counterintuitive result. This suggests a problem with our interpretation of the data,
with the data, or with our formulation of the problem. As for the data, it could be
that Pareto distributions with δ > 1 are not really stable over time. More careful
analysis of the data may indicate that the distribution really converges to a Pareto
distribution with δ ≤ 1. This is an argument advanced by Brakman et al. (1999)
for the case of the Netherlands. In that case, the results of the paper only apply
after the distribution becomes stable. Another important problem with the data is
the definition of cities. According to Rosen and Resnik [1980], when a metropolitan
definition of cities is used, rather than a political definition, the estimated exponent
of the Pareto distribution decreases substantially.
It seems, however, that the assumption of a strictly constant number of cities may

be too strong for certain countries. If the number of cities could increase the Pareto
exponent would increase too, a result described by Simon [1953].

3.6 Time Dependent Urban Growth

The following extension allows for a time dependent growth rate of urban population.
This extension is important because it allows for a decreasing growth rate of urban
population, a more realistic description of the urban process in many developed coun-
tries. We now show that non-stationary diffusion processes can account for such a
fact, but under the results of Theorem 7 remain intact.
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Suppose now that the urban population, Nt := N(t), grows continuously over
time and define γt := N 0(t)/N(t) ≥γ to be the instantaneous growth rate of urban
population at time t. Assume γ> 0. The fact that γt changes through time suggests
that the diffusion process must be time dependent in order for the labor market to
clear at every t. It is natural to require the drift of the process to be time dependent,
µ(x, t). On the other hand, changes in the deterministic growth of urban population
are unlikely to affect the volatility of growth. Thus, we retain our assumption about
the variance being only state dependent, i.e., σ2(x, t) = σ2(x) for all t.
The following is the corresponding FKE for this process along a balanced growth

path

∂

∂t
p(x, t) =

1

2

∂

∂x2
£
x2σ2(x)p(x, t)

¤− ∂

∂x
[xµ(x, t)p(x, t)] , (9)

where p(x, t) = δ (ylNt)
δ x−δ−1. In addition, a condition to assure equilibrium in total

population is required. The analogue to equation (3) is given by

Et[x (µ(x, t)− γt)] = 0 for all t. (10)

The following Proposition generalizes Theorem 7.

Proposition 8 Let x follow a diffusion process satisfying equations (9) and (10),
and suppose the stationary distribution of y := x/Nt is P (y) (the Pareto distribution).
Then, µ(x, t) = γt and σ2(x) = Axδ−1 + Bxδ for all x, where A and B are positive
constants.

Proof. Let γ = γt in Appendix. All results follow.

4 Economic Models

This section studies a standard urban model based on economies of localization. Cities
emerge in this economy due to the presence of scale economies, external to firms but
internal to industries, as in Henderson [1988]. We allow for stochastic technologies
and preferences, and look for necessary conditions such that the model can generate
a Pareto distribution of city sizes. This section uses results derived in the previous
section. In particular, according to Theorem 7, cities must growth at the same rate
in a deterministic version of the model. Thus, cities must exhibit parallel growth.
Negative externalities in the model induce cities to specialize in production. How-

ever, in contrast to existent literature, negative externalities play no role in limiting
city size in our model. City size is just limited by size of the market in which the
city specializes. As noted by Eaton and Eckstein [1997], any upper bound to city
size is inconsistent with parallel growth. Once a city reaches that bound, its growth
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rate slows down or becomes zero. It could also be the case that the factors limiting
city growth (like transportation or pollutions technologies) evolve over time allowing
cities to grow, as in Black and Henderson [1999]. Parallel growth can arise in this
case only if the bounds grow at least as fast as the urban population. In this case
the bounds become irrelevant because, as a general rule, they do not bind. In ad-
dition, such feature is hard to justify because it requires unusual assumptions about
the underlying parameters.
There are two main results in this section. First, that the same conditions that

guarantee the existence of a balanced growth path in multisectorial endogenous
growth models are also needed to generate Pareto distributions. The reason is sim-
ple. If cities specialize in production, at least at some extent, then city growth just
mirrors sectorial growth. Second, the distribution of fundamentals, preferences and
technologies, must be Pareto too under general conditions.

4.1 Basic Model

Consider an economy inhabited by a large number of workers, Nt = eγt, firms, and
a benevolent government. There are S locations and I industries to produce such
that S > I. At the beginning of every period the government announces linear taxes
on income for each location and industry, τ is, 1 ≤ i ≤ I and 1 ≤ s ≤ S. Firms and
workers then choose locations and industries to produce and work during the period.
A location with a positive mass of workers is called a ‘city’. To simplify notation,
time subscripts are dropped.
Labor mobility guarantees that the after-tax wage rate, denoted w, is equal across

locations and industries with a positive mass of workers. The pre-tax wages rate,
wis, must then satisfy w = (1 − τ is)wis. Goods can be costlessly transported across
locations. Arbitrage then guarantees that the price of good i, qi, is equal across
locations.

4.1.1 Production

Firms are competitive. A firm in location s and industry i chooses the amount of
labor, lis, that maximizes profits given by

max
lis

qiAiϕ
i(Lis, Ls)lis − wislis,

where Ls is the size of city s, Lis is the size of industry i in city s, and Aiϕ
i(Lis, Ls)

is the average productivity of labor, exogenous to the firm. Productivity has two
components. The first is an idiosyncratic technological shock, Ai, known at the
beginning of the period before time t decisions are made. Ai follows a Markov process
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with transition probability φA(x0, t0;x, t), common across industries. Assume that φA

has a unique invariant distribution, ΦA.
The second component is a differentiable function ϕi : <2+ → < that describes the

benefits and costs of agglomeration. ϕi satisfies ϕi
1(L,Ls) > 0, ϕi

2(L,Ls) < 0 and
ϕi
1(L,Ls)+ϕi

2(L,Ls) > 0. The first condition states that there are economies of scale
at the industry (local) level, holding the size of the city constant. The source of these
increasing returns may be informational spillovers, search and matching in local labor
markets, and/or pecuniary externalities. The second condition introduces congestion
costs: the productivity of industries in a particular city decreases with the size of the
city. The third condition states that from the point of view of an individual industry
the economies of scale are always positive even after accounting for the congestion
costs. A particular function that satisfies these conditions is

ϕi(Lis, Ls) = Lτ i
isL

−βi
s , τ i > βi > 0. (11)

Finally, free entry guarantees zero profits in all locations and industries, and de-
termines the level of employment in every industry, given the size of the city

qiAiϕ
i(Lis, Ls) = wis. (12)

4.1.2 Preferences

Workers seek to maximize their lifetime utility described by

U = E0

Z
e(γ−ρ)tu (ct; θt) dt,

where ct = [c1t, c2t, ., cIt] is a vector of consumption goods, θt = [θ1t, θ2t, ..., θIt] is a
random vector of tastes for goods, ρ is the rate of discount, and u is a homothetic
instantaneous utility function. θt is known at the beginning of the period before
time t decisions are made. θit follows a Markov process with transition probability
φθ(x0, t0;x, t), common across industries. Assume that φ

θ has a unique invariant
distribution, Φθ.
Let W be the total after-tax labor income of the economy (at time t), q =

[q1, q2, ..., qI ] be vector of prices, and Ci(q, θ,W ) the aggregate demand of good i.
Since u is homothetic, the aggregate demand functions have the form7

Ci(q, θ,W ) = Ci(q, θ)W

7Demand for good i only depends on time t variables q, W and θ since aggregate borrowing and
lending is zero.
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Denote �ij the price elasticity of demand of good i with respect to price j, i.e.
�ij ≡ ∂ lnCi(qt,θ)

∂ ln qj
, and denote � the I × I price elasticity matrix, a matrix with �ij in

the i row and j column.

4.1.3 Government

There is a benevolent government that seeks to maximize a utilitarian social welfare
function by using lump sum taxes and transfers and location and industry specific
proportional income taxes. Without externalities in production, it would be optimal
to use only lump sum taxes and transfers. With externalities, however, it is optimal
to use income taxes to induce efficient production.
Production is efficient if each city hosts a single industry, and each industry is

located in a single city 8. This type of city specialization avoids unnecessary congestion
costs that arise when industries locate next to each other (formally, ϕi(Lis, Lis) >
ϕi(Lis, Lis + L) for any L > 0). We assume that the government uses the following
tax scheme that induces efficient production: zero income taxes on activity i at
location i, and confiscatory income taxes on the same activity in any other location.
Under this tax scheme, cities specialize in production but no income taxes are paid
in equilibrium9. The total production of industry i is thus determined by ϕi(Lis) ≡
ϕi(Lis, Lis). The degree of net increasing returns in activity i is measured by the
elasticity of average productivity with respect to the agglomeration,

αis(Lis) :=
ϕi0(Lis)

ϕi(Lis)
Lis. (13)

For the particular functional form (11), ϕi(Lis) = Lαi
is , where αi(Lis) = αi :=

τ i − βi.

4.1.4 Deterministic Balanced Growth Paths

The model just described is fairly general. It allows the degree of externalities to
differ across industries and/or sizes. In addition, it imposes no major restrictions on
the instantaneous utility function like symmetry. This section studies what restric-
tions on preferences and technologies are required in order for the equilibrium of the
deterministic model to exhibit a balanced growth path. According to Theorem 7, this
is a minimum requirement that a model of cities must satisfy in order to be consistent
with the evidence of city size distribution.

8We introduce non-tradable goods below so that efficient cities do not fully specialize.
9Thus, our solution concept will be a competitive equilibrium with optimal taxation (Ramsey

Equilibrium). Alternative, the following solution concept with a large number of competitive ‘devel-
opers’ (as in Henderson 1974) produces the same allocations. Each developer operates one location,
and chooses an activity i, and labor input, Lis, to maximize profits qiAiϕ

i(Lis, Ls)Lis − wlis given
qi and w. The developer acts competitively because she takes prices as given.
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Consider a deterministic version of the model.
Definition: A balanced growth competitive equilibrium with optimal taxes, or bal-

anced growth path, are trajectories for prices, qit, wages, wt, quantities of goods, Cit,
and labor allocations, Lit, such that (i) wt = qitAiϕi(Lit) (profit maximization); (ii)
Cit = Ci(qt, θ)wtNt (Utility maximization); (iii) Cit = Aiϕ

i(Lit)Lit (Goods market
clearing); (iv) Nt =

X
Lit (Labor market clearing); (v) Lit

Nt
= constant (Balanced

industry growth); (vi) q1t = 1 (the numeraire).
Let bqj = dqj/dt

qj
be the instantaneous growth rate of the relative price bq. According

to conditions (i), (v) and (vi) of the previous definition, relative prices obey

bqit = [α1t − αit] γ for all i and all t. (14)

This equation states that along balanced growth paths changes in relative prices
are completely determined by technological factors. Preferences play no role.
Define

�t :=


�11t �12t .. �1It
�21t �22t .. �2It
.. .. .. ..
�I1t �I2t .. �IIt

 ,4αt :=


α1t − αit

α1t − α2t
...

α1t − αit

 .
Note that �t is purely determined by preferences while 4αt is purely determined

by technologies. The following is the third main result of the paper:

Proposition 9 A balanced growth path exists if only and only if¡
1+ εt

¢4αt = 0 for all t. (15)

where 1 is the identity matrix.

Proof. Denote sit ≡ qitCit
wtNt

the share of total expenditure on good i. According to
the definition of a balanced growth path, sit must be constant and given by

sit =
Lit

Nt
= si for all i.

Using condition (ii) of the definition above, sit also satisfies

sit = qitCi(qt, θ) for all i.

Log-linearizing the two previous conditions and using (14) one obtains the result.
According to this Proposition, we can typify three type of sufficient conditions to

obtain a balanced growth path.
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1. 4αt = 0 for all t or αi = α for all i and t. This is a technological balanced
growth path because it restricts only technologies but not preferences. For ex-
ample, preferences can be asymmetric, and/or the elasticities of substitution
can vary. The condition states that a technological balanced growth path exists
if increasing returns are identical across all industries.

2. 1+εt = 0, or equivalently, �ii = −1 for all i and �ij = 0 for all j 6= i.We call this
case a demand-driven balanced growth path because it only restrict preferences
but no technologies. For example, increasing returns may be explosive for some
industries while they may die out for other industries. This restriction implies
that u is of the Cobb-Douglas type so that the elasticity of substitution between
goods is equal to 1.

3. Finally, if 4αt 6= 0 and 1 + εt 6= 0 then the condition (15) implies that 1 is
an eigenvalue of εt, and 4αt is an associated eigenvector. We call this case a
knife-edge balanced growth path because such path only exists under a delicate
combination of technologies and preferences.

The previous results are summarized in the following corollary.

Corollary 10 A Balanced growth path exists if and only if (i) �ii = −1 and �ij = 0
for all i, j and i 6= j (preferences are of the Cobb-Douglas type); or (ii) αi = α for all
i (increasing returns are identical for all industries); or (iii) 1 is an eigenvector of εt
and 4αt is one of its associated eigenvectors..

4.1.5 City Size Distribution

We now study what constraints on the steady state distribution of the fundamentals,
ΦA and Φθ, is implied by the fact that the steady state distribution of city sizes, F , is
Pareto with exponent δ.We find that ΦA and Φθ must also be Pareto with exponent
δλ, where λ is function of the parameters of the model. This result is powerful: one
only needs to choose the stochastic processes governing θ and A so that their steady
state distributions are Pareto. Examples of these processes are provided in Section 3
and below.

To further simplify the analysis suppose that ϕi(Lis) = Lαi
is and u(c, θ) =

³P
i (θ

η
i ci)

η−1
η

´ η
η−1
,

where η is the elasticity of substitution. Following Corollary 10, we assume that either
αi = α for all i or η = 1 in order to assure the existence of a steady state distribution
of city sizes.
The assumed preferences induce the following demand function for good i,

Cd
i = vη−1

µ
θi
qi

¶η

W, (16)
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where v is the price index of the consumption good defined as v :=
¡P

i θ
η
i q
1−η
i

¢ 1
1−η .

The aggregate supply of good i is equal to

Cs
i = AiL

1+αi
i

under optimal taxation. In addition, the zero profits condition implies that

w = qiAiL
α
i .

Using the last three equations to solve for Li, it follows that

Li = Bi

£
Aη−1
i θηi

¤ 1
1+αi(1−η) ,

where Bi = [vη−1w−ηW ]
1

1+αi(1−η) . This equation together with the equilibrium
condition N =

P
Li, implies that

Li

N
=

Bi

£
Aη−1
i θηi

¤ 1
1+αi(1−η)P

iBi

£
Aη−1
i θηi

¤ 1
1+αi(1−η)

.

Finally, under the assumption that either αi = α for all i or η = 1, the previous
expression could be simplified to

Lit

Nt
=

zit/IP
i zit/I

. (17)

where zit :=
£
Aη−1
it θηit

¤ 1
1+α(1−η) . This is the crucial expression for our purposes. The

variable on the left hand side is the relative size of city i. The steady state distribution
of this variable is Pareto with exponent δ. It follows that the variable on the right
hand side must be distributed Pareto too. Furthermore, since

P
i zit/I approaches a

constant for large I, then zit must be distributed Pareto with exponent δ.
The following is the fourth main result of the paper.

Proposition 11 Suppose the steady state distribution of Lit
Nt
is Pareto with exponent

δ. Then zit is also distributed Pareto with exponent δ for large I. In addition, (i) if
only preferences are stochastic (so that Ait = A for i and t) then Φθ must be Pareto
with exponent δη

1+α(1−η) provided that 1 + α (1− η) > 0; (ii) if only technologies are
stochastic (so that θit = θ for all i and t) then ΦA must be Pareto with exponent
δ(η−1)

1+α(1−η) , provided that
η−1

1+α(1−η) > 0; (iii) If η = 1 then preferences must be stochastic
with exponent δ.

Proof. (i) In this case zit = θ
η

1+α(1−η)
it . The pdf of z is a Pareto density, δzδl z

−(1+δ).
Since θ is a monotonic transformation of z, then the pdf of θ is given by δ|λ|θδλl θ−(1+δλ),
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where λ = η
1+α(1−η) (Hogg and Craig (1995), page 169). This is the pdf of a Pareto

distribution with exponent δλ if λ > 0. Part (ii) of the Proposition can proved in the

same way. In that case zit becomes zit = A
η−1

1+α(1−η)
it . Part (iii) is immediate.

This Proposition states a simple but powerful result: under some general restric-
tions the fundamentals of the model must be distributed Pareto if the city size distri-
bution is Pareto. This result is very general since only a minimum set of restrictions
have been imposed. An additional constraint provided by the Proposition is that η
must be bounded above by the degree of increasing returns: 1+α

α
> η. This result

indicates that if goods are easily substituted (η is too large), then the economy may
end up producing only a single good in order to fully exploit the increasing returns
to scale.
The final part of the Proposition states that when preferences are Cobb-Douglas

technological shocks play no role in determining the city size distribution. Instead,
the distribution is completely determined by demand side shocks such as shocks to
preferences. In this case, larger cities are cities that produce the more preferred goods
in the economy. In contrast, cities that produce goods with better technological levels
are neither smaller nor larger. This is the result of two forces that exactly offset
each other in the case of Cobb-Douglas preferences. In one hand, cities with better
technologies tend to be smaller because less workers are needed to satisfy the demand
for their goods. In the other hand, better technologies reduce prices and increases
demand.
But why would θ or A be distributed Pareto? Proposition 2 and Lemma 5 charac-

terizes a class of processes that could induce this distribution. A particular case results
when the exogenous variables follow proportional growth processes. If the stochastic
process determining θ or A satisfies Gibrat’s law, then their steady state distribution
may be Pareto. More precisely, if θ (or A) follows a ‘reflected geometric Brownian
motion’ process, then the distribution of θ (or A) converges to a Zipf’s distribution
(Gabaix (1999), Proposition 1). The following two results combine Proposition 1 in
Gabaix with the previous Proposition.

Proposition 12 (Random tastes) Suppose Ait = A and θ follows a reflected geomet-
ric Brownian motion. Then F is Pareto with exponent δ = 1+α(1−η)

η
. F is Zipf only

if η = 1.

This Proposition provides an economic interpretation for Zipf distribution for city
sizes based on stochastic tastes. It arises when η = 1 and tastes follow reflected
random walks.

Proposition 13 (Random technologies) Suppose θit = θ and A follows a reflected
geometric Brownian motion. Then F is Pareto with exponent δ = 1

η−1 − α. F is Zipf
only if η − 1 = 1

1+α
.
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The Proposition provides a technological interpretation for Pareto distribution for
cities. It arises when technological levels follow reflected randomwalks, and increasing
returns are equal across industries.

4.2 Diversified Cities and Non-tradable goods

Cities are usually regarded as very diversified production entities but the previous
model portraits cities as highly specialized. The following is an extension of the
model where cities are highly diversified in the production of nontradables, although
they still specialize in the production of tradables. All results from the previous
section hold. Relative city sizes are still completely determined by the relative size of
their tradable sectors.
Denote the goods in the previous section tradable goods, T . They are produced

under scale economies and bear no transportation costs. In addition to tradables,
there are other types of goods in the economy, called nontradables, which are costly
to transport and can be produced under the following constant returns to scale tech-
nology.

yi = li for i ∈ NT,

Preferences are similar to the previous section but now they include nontradables
goods,

u(c) =

Ã X
i∈T∪NT

(θηi ci)
η−1
η

! η
η−1

, η > 0.

Demand functions are still given by (16) for i ∈ T ∪NT .
We call tradables the goods that are produced under scale economies. Each one

of them is produced in a single location but consumed everywhere. Goods produced
under constant returns to scale are non-tradable. No location has a particular ad-
vantage producing them and they bear transportation costs if traded. To save in
transportation costs, these goods are produced at the same place where they are de-
manded. As a result, cities in this model specialize in producing one tradable, but
diversify in producing all nontradables.
It is now established that the relative population of any two cities is completely

determined by the extent of their tradable sectors. Let LNT =
P

i L
NT
i be the amount

of labor employed in the production of nontradables, and similarly for LT . The total
population in a particular city includes workers in both activities. Let LNT

is be the
size of workers producing good i ∈ NT at city s, and let LNT

s :=
P

i L
NT
is be the total

size of worker producing nontradables at city s. Total population at city s is thus
given as Xs := LNT

s + LT
s .
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Lemma 14 Xi

Xj
=

LTi
LTj
along a balanced growth path.

Proof. Since preferences are homothetic, all demands are linear in income. In
addition, relative income between any two cities is just their relative population since
wages are equal across cities in a balanced growth path. Thus, relative consumption
of good h between cities i and j is

chi
chj

=
Xi

Xj
for all h.

From the supply side, we have chi = Lhi for h ∈ A. Therefore, Lhi
Lhj

= Xi

Xj
for all h,

which implies,
LA
i

LA
j

=

P
h∈A LhiP
h∈A Lhj

=
Xi

Xj
.

Now, since Xi

Xj
=

LBi +L
A
i

LBj +L
A
j
, it follows that LAi

LAj
=

LBi
LBj
. Thus, LBi

LBj
= Xi

Xj
.

Using this lemma one can safely ignore nontradables when determining relative
city sizes, but still can interpret cities as diversified production places.

4.3 A Model with Capital

The previous models have abstracted from capital, either physical or human, in the
previous model. Externalities, however, are usually associated with the amount of
human capital in the city. There is a simple way to introduce capital in the model
that leaves the previous results intact. Suppose the production function for tradable
goods is given by

yis = ϕi(Kis, Lis)l
αi
is k

1−αi
is for i ∈ B, (18)

where Kis is aggregate capital employed in the production of good i at location s,
and ki is individual capital. Suppose there is a rental market for capital and capital
can be moved between locations without cost. Let r be the rental rate and w the
wage rate. Profits maximization requires the relative prices of capital and labor to
be equal to the relative productivities, i.e., r

w
= αi

1−αi
lis
kis
or

kis =
αi

1− αi

w

r
lis

In addition, Kis =
αi
1−αi

w
r
Lis. Replacing these two expression into the production

function (18), one obtains:

yis = ϕi(
αi

1− αi

w

r
Lis, Lis)

µ
αi

1− αi

w

r

¶1−αi
lis for i ∈ B,
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or
yis =

˜
ϕi(Lis, w, r)lis for i ∈ B

which has the same functional form as the one in Section 4.1. The inclusion of w and
r into

˜
ϕi does not affect the previous results because they are equal across cities.

4.3.1 Other Models in the Literature

To the extent of our knowledge, there are currently in the literature only three other
models capable of producing parallel growth. The first is by Gabaix [1999] who
induces city growth and mobility due to the random nature of the amenities provided
by cities. This unorthodox approach requires constant returns to scale technologies,
which leave unexplained the source of agglomeration and the nature of the amenities.
The second model is by Black and Henderson (1999). Cities arise in their economy

due to economies of localization. Cities attain an optimal size due to the existence
of commuting costs that limit the gains from the positive externalities. Furthermore,
optimal city sizes grow due to human capital accumulation. Cities specialize either in
the production of intermediate goods or final goods. Parallel growth occurs because
the final goods production function is Cobb Douglas, a property consistent with our
results in the previous section. This suggests, however, that their result about parallel
growth is not robust to the following natural generalization. Several cities specializing
in different intermediate inputs, one city specializing in the production of final goods,
and elasticity of substitution between inputs different from 1.
There is, however, a more serious problem with their model. Except under knife-

edge parametrization, the growth rate of their economy either increases or decrease
through time, a counterfactual. Thus, the scale effect does not show up in the growth
rate of cities, but in the growth rate of the economy. This is a natural consequence
of introducing two engines of growth into the model: capital accumulation and pop-
ulation growth.
An alternative model is the one by Eaton and Eckstein [1997]. In their model, city

size depends on the amount of human capital accumulated cities. Cities of different
sizes coexist because they differ in their productivity as places to acquire capital.
There are spillovers across cities in the accumulation of human capital. They are able
to generate proportional growth only under the condition of zero discounting.

5 Conclusions

An robust empirical regularity is that the city size distribution is well approximated
by a Pareto distribution. This paper provides general restrictions that urban models
must satisfy in order to be consistent with this regularity. More precisely, it finds
restrictions on preferences, technologies, and on the stochastic properties of the ex-
ogenous driving forces of standard urban models.
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The first part of the paper characterizes Markov processes that preserve Pareto
distributions. They include the well-known cases of proportional growth processes,
but also processes that are size dependent. The paper obtains a sharp characteri-
zation when additional plausible assumptions are made about the number of cities
and population growth. Pareto distributions can only arise from processes that are
proportional in mean but not in variance. Specifically, the expected growth rate of a
city must be independent of its size but the variance of the growth rate must have the
form A· Sizeδ−1, where δ is the Pareto exponent. This characterization has several
implications. First, it means that under general conditions, Zipf’s law can only result
from Gibrat’s law: growth must size independent. Thus, Gibrat’s law is not just an
explanation of Zipf’s law, as argued in the literature, but it is the (statistical) expla-
nation. Second, it provides a rationalization of how the scale of a city matters for its
growth. Size affects growth volatility but not mean growth. Finally, it also provides
a rationalization for the diversity of exponents found in the data. Cities in different
countries have different growth volatilities. In particular, Pareto distributions with
larger exponents (more unequal distributions) require more volatile growth processes.
The second part of the paper uses the statistical findings to characterize the set of

feasible preferences, technologies, and exogenous shocks in a standard urban model.
The paper finds that under general conditions the steady state distribution of the
exogenous driven force must be Pareto, and one of two conditions must be satisfied:
(i) the elasticity of substitution between goods must be 1 and preferences must be
stochastic; or (ii) externalities must be equal across goods and technologies must be
stochastic. The paper also provides examples of urban models that generate Pareto
distributions and Zipf’s laws for city sizes.
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Appendix

Proof Equation (6). Multiplying (5) by x, taking expected value with respect
to P (·) and using condition (3) one obtains,

E

·
x2

∂

∂x
σ2(x)

¸
+ (1− δ)E

£
xσ2(x)

¤
+AE

£
x1+δ

¤
= 0 (A0)

The first term of the last expression can be re-expressed as

E[x2
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Plugging this result into (A0), it follows that
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Now, Ex1+δ =
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previous equation as δxδl
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which is the equation in the text.
Proof of the Main Theorem. In our case p(x, t) = δ (xlt)

δ x−δ−1. Then
∂
∂t
p(x, t) = γδp(x, t). The KFE reads
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integrating once (with respect to x)
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Now, integrating in the interval [xlt,∞) we haveZ ∞

xlt

[µ(x)− γ]xp(x, t)dx =
1

2

£
x2σ2(x)p(x, t)−A(t)x
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xlt

(A2)

Now, according to the condition (3), the left hand side of the previous equation
must be zero for all t. Below we show that there are only two possible cases: either
A(t) = 0 for all t or A(t) 6= 0 for all t.
Consider first the case A(t) = 0 for all t. Then the following equality must hold

for all t.
1

2
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Define β = limv→∞ v1−δσ2(v) (we require the limit to exist and be bounded to assure

a solution satisfying (3)). Then,

σ2(xlt) = βxδ−1lt for all t ≥ 0
We can replace the previous condition “for all t” by the expression “for all xlt”,

but then it is the same as “for all x” since xlt grows continuously and unboundedly
overtime. Thus, we conclude,

σ2(x) = βxδ−1 for all x (A4)

Now, replacing this expression into (A1) given that A(t) is zero, we get,
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therefore,
µ(x) = γ for all x. (A5)

Thus, (A4) and (A5) describe one possible solution. Now consider the case A(s) 6=
0 for some s ≥ 0. In that case, condition (3) imposes£

x1−δσ2(x)δxδlt −A(t)x
¤∞
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= 0 for all t
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This condition requires, among other things limx→∞ x−δσ2(x)δxδlt − A(t) = 0 for
all t, or

A(t) = δhxδlt for all t, (A7)

where h :=limx→∞ x−δσ2(x), a finite number. Substituting (A7) into (A6), we
obtain
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, a finite number according to (A8). Finally,

solving for σ2(xlt) from the previous equation we obtain
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Now, substituting (A7) and (A8) into (A1),
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Thus, (A5) also holds if A(s) > 0. In any solution, the drift must be γ (expected
mean growth must be independent of size). The diffusion coefficient, in the other
hand, can either have the form (A4) or (A8), but (A4) is a particular case of (A8).
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1 82.35 11.76 5.88
0.2 9.38 50.00 31.25 6.25 3.13
0.3 34.38 37.50 25.00 3.13

1 0.4 12.90 38.71 48.39
9 0.5 3.13 9.38 21.88 37.50 25.00 3.13
8 0.6 9.09 60.61 30.30
0 0.7 3.13 15.63 62.50 18.75

0.8 6.25 75.00 18.75
0.9 12.50 81.25 6.25
1 3.13 96.88

Source. Dobkins and Ioannides (2000) p. 258
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Figure 1:
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