# Zipf's Law of City Sizes: A Microeconomic Explanation *Far From Equilibrium*

#### **Rob Axtell**

#### **Center on Social and Econmic Dynamics**

#### The Brookings Institution and Johns Hopkins University

www.brookings.edu/es/dynamics

raxtell@brookings.edu

Joint work with Richard Florida, Carnegie Mellon University

# Motivations

#### • *Positive* goals:

- Data on cities and firms are unique in the social sciences:
  - » Regular: simple functional forms
  - » Stable: Invariant over 100–200 years
  - **»** Robust: Across regions, countries
- Today there exists no microeconomic explanation for these data
- Normative goals:
  - Governments at all levels want more economic growth
  - Are they providing the right incentives (e.g., tax breaks)?
  - Each locality wishes to nucleate its own industrial clusters
  - Same ideas might be leveraged for development worldwide

# Size Distribution of U.S. Firms, 1997



Approximately 100 million workers and < 4 million firms in U.S.:

- ✤ median firm size is < 10, average firm size is ~25</p>
- median worker is employed at a firm of size 100
- ~80% of employees work in firms smaller than 500

### Firm Sizes are Weibull Distributed



The Weibull is an extreme value distribution

# Zipf's Law: U.S. in 1960



- Valid in the U.S. for at least 150 years, despite changes in the number and average size of cities
- Valid in most industrial countries (not Russia!), save 'king' cities
- Robust to changes in rank (serial correlation in growth rates)
- Other city facts: wages proportional to city size<sup>0.06-0.08</sup>

# Why a New Approach is Needed

#### • Neoclassical economics:

- Behavioral model for people:
  - » Fully-informed
  - » Rational
- People interact only indirectly with one another (through markets)
- Focus on equilibrium outcomes
- Complexity approach:
  - People are adaptive
  - They interact directly with one another
  - Focus on dynamics
  - Methodology is agent-based modeling

# The Complexity Approach

#### • Agent Computation:

- Create a population of agents in software and give them rules of interaction
- 'Spin' the society forward in time
- Study what emerges
- Firms:
  - Can we get firms to self-organize?
  - What rules of interaction lead to skewed distributions of firm sizes?
- Cities:
  - Can we get agents and firms to agglomerate?
  - What rules lead to Zipf-like agglomerations?

# **Many Theories of the Firm**

- Textbook orthodoxy: Firms as black boxes
  - Production function specifies technology
  - Profit maximization specifies behavior
  - Winter's critique: Not even methodologically individualist
- Coase and Williamson ('New Institutionalism'):
  - "Transaction cost" approach
- **Principal-Agent approaches:** 
  - Firm as nexus of contracts (incomplete contracts)
- Firm as Information Processing Network
- Evolutionary economics:
  - Purposive instead of maximizing behavior
- Industrial Organization
  - Empirical studies have little connection to theory

#### Firm Facts: Growth Rates are Laplace Distributed



Stanley, Amaral, Buldyrev, Havlin, Leschhorn, Maass,, Salinger and Stanley, *Nature*, *379* (1996): 804–6

### More Firm Facts: Variance in Growth Rates Decreases with Firm Size



S ~  $r_0^{-\beta}$ β ≈ 0.15 ± 0.03 (sales) β ≈ 0.16 ± 0.03 (employees)

Stanley, Amaral, Buldyrev, Havlin, Leschhorn, Maass,, Salinger and Stanley, *Nature*, *379* (1996): 804–6

### **Further Firm Facts**

- Wage rates are increasing in firm size:
  - Log(wages)  $\alpha$  Log(size)
- More variance in job destruction time series than in job creation
- 'Stylized' facts:
  - Growth rate variance falls with age
  - Probability of exit falls with age

### **More Firm Facts**

- Wage rates are increasing in firm size:
  - Log(wages)  $\alpha$  Log(size)
- More variance in job destruction time series than in job creation
- 'Stylized' facts:
  - Growth rate variance falls with age
  - Probability of exit falls with age
- Today there is no *microeconomic* explanation for these observations!

Requirements of an Empirically Accurate 'Theory of the Firm' (after Stanley *et al.* [1996])

- Produces a right-skewed (e.g., power law, log normal) distribution of firm sizes
- Generates Laplace (double exponential) distribution of growth rates
- Yields variance in growth rates that decreases with size according to a power law
- Wage-size effect obtains
- Methodologically individualist (i.e., written at the agent level)

# Synopsis of Endogenous Firm Formation Model

- Heterogeneous population of agents
- Situated in an environment of increasing returns (team production)
- Agents are boundedly rational (locally purposive not hyper-rational)
- Rules for dividing team output (compensation systems)
- Agents have social networks from which they learn about job opportunities

### **Firm Size Distribution from Model is Weibull Distributed**



**<u>Stochastic process models</u>:** Gibrat process leads to log normal, Simon's model yields to Yule distribution (discrete Pareto)

# **Firm Growth Rate Distribution**

#### **Growth rates Laplace distributed by K–S test**



#### Stanley et al [1996]: Growth rates Laplace distributed

### Variance in Growth Rates as a Function of Firm Size



Stanley *et al.* [1996]: Slope ≈ -0.16 ± 0.03 (dubbed 1/6 law)

#### Wages as a Function of Firm Size: Search Networks Based on Firms



Brown and Medoff[1992]: wages  $\alpha$  size <sup>0.10</sup>

#### **Competing Theories of City Formation**

- Positive-negative externality trade-off models (increasing returns vs. congestion)
  - E.g., A Marshall, J Jacobs, V Henderson
- 'Central Place' theory (Christaller [1933])
  - Recent formalization by Fujita, Krugman and Mori
- 'Nihilistic' stochastic process models
  - For example, Simon [1955], Hill [1974], Gabaix [1999]
  - Empirical orientation--these explain Zipf's law

## **Herbert Simon's Model**

- There is some initial distribution of cities
- With probability  $\varepsilon \ll 1$ , a new city is born
- With probability p = 1 ε, a population lump is added to an existing city in proportion to the city size (i.e., growth α size; growth rate independent of size)
- Yields a power law of city size as a function of rank with exponent 1 +  $\varepsilon$
- Similar model due to Steindl

### **Problems with these approaches**

- Stochastic models *explain* the data but not 'economically,' i.e., they have little economic content
- Models with microeconomic content don't explain the data
- The riddle (Krugman *et al.* [1999]): "...at this point nobody has come up with a plausible story about the process that generates the rank-size rule..."

# **Story Behind the Model**

#### • People – Firms – Cities:

- People live in locations
- People come together to form Firms
- People migrate to better job opportunities
- Local agglomerations of Firms are Cities
- Productive Cities attract more People
- Larger Cities foster more Firms
- Human Capital Theory:
  - Human capital driven growth (Jane Jacobs externalities, Lucas, Roemer, etc.)
- Generates a stable system of cities or urban hierarchy

# Methodology



≠local purposiveness;
≠team (joint) production;
≠heterogeneous preferences/human capital;
≠adaptive individuals
≠constantly adjusting input
≠periodically jumping firms
≠ability to start-up new firms ≠increasing returns to human capital;
≠dynamic processes of firm formation and evolution;
≠finite firm lifetimes;
≠skewed size dstribution;
≠successful firms attract human capital
≠firms are emergent ≠cities attract firms
≠big cities attract successful firms
≠path-dependent histories
≠movement up and down size distribution
≠occasional birth of new cities
≠cities are 'super-emergent'

higher levels of organization

increasing complexity

# **City Formation Model**

- There is a finite set of 'locations,' L = {a, b, c,..., z}
- Each agent's initial location is random
- When an agent joins a firm it adopts the the firm's location (initial location of the founder)
- When an agent starts up a new firm:
  - with probability  $\delta \ll$  1 it selects a random location
  - with probability 1  $\delta$  it keeps its present location

# **Typical Realization**

- 10,000 agents
- Basic firms model:
  - increasing returns,  $\alpha$  =2
  - uniformly distributed preferences
  - equal sharing
  - agents start as singletons
- Basic city model:
  - 100 locations
  - $\delta = 1/2$  %
  - initial distribution of agents across locations is uniform



### **Model Yields Zipf's Law**



# Summary, I

#### An empirically-accurate theory of the firm:

- ✓ Produces a right-skewed (Weibull) distribution of firm sizes
- ✓ Generates Laplace (double exponential) distribution of growth rates
- ✓ Yields variance in growth rates that decreases with size according to a power law
- ✓ Methodologically individualist (i.e., written at the agent level)

#### Summary, II

- Local increasing returns with free agent entry and exit is *sufficient to generate* firms and cities
- Highly non-stationary (turbulent) micro-data, stationary macro-data
- Constant returns at the aggregate level
- A microeconomic explanation of the empirical data
- Successful firms and cities are those that can attract and maintain high productivity workers
- Analytically difficult model tractable with computational agents

### **Future Work**

- Get internal structure to self-organize
  - Evolve governance structure within firms
  - Fractal dimension of intra-city geography

### **Future Work**

- Get internal structure to self-organize
  - Evolve governance structure within firms
  - Fractal dimension of intra-city geography
- Compute stationary distributions analytically:
  - Sizes
  - Growth rates
  - Dependence of growth rate variance on size
  - Dependence of wages on size

# Russia: Systematic deviation from Zipf

- 67 million people in largest 164 cities
- City size distribution is far from Zipf
- Too few large cities
- Insufficient human capital formation?
- We can compute amount of migration necessary
- Can we compute time needed for adjustment?



### Five Speculations...

- 1. Microeconomic equilibrium theories will never explain firm and city size data
- 2. Many stationary aggregate data do not have explanations involving agent-level equilibrium
- 3. The focus of the conventional theory of the firm is highly *normative*
- 4. Cities are just agglomerations of firms
- 5. Countries too...?

#### Firms and Countries: Same Distribution of Growth Rates!



Canning *et al.*, *Economics Letters* (1998)