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Abstract

Power law distributions are an increasingly common model for computer science
applications; for example, they have been used to describe file size distributions and
in- and out-degree distributions for the Web and Internet graphs. Recently, the
similar lognormal distribution has also been suggested as an appropriate alternative
model for file size distributions. In this paper, we briefly survey some of the history
of these distributions, focusing on work in other fields. We find that several recently
proposed models have antecedents in work from decades ago. We also find that
lognormal and power law distributions connect quite naturally, and hence it is not
surprising that lognormal distributions arise as a possible alternative to power law
distributions.

1 Introduction

Power law distributions (also often referred to as heavy-tail distributions, Pareto distri-
butions, Zipfian distributions, etc.) are now pervasive in computer science; see, e.g.,
[6, 8, 7, 13, 16, 18, 19, 21, 22, 24, 28, 29, 34, 35, 37, 38, 39, 49, 55].1

This paper was motivated by a recent paper by Downey [22] challenging the now con-
ventional wisdom that file sizes are governed by a power law distribution. The argument
was substantiated both by collected data and by the development of an underlying genera-
tive model which suggested that file sizes were better modeled by a lognormal distribution.
I elaborate on this specific model in another paper [50]. Studying this work led me to learn
more about the lognormal and power law distributions. As part of this process, I delved

∗Supported in part by an Alfred P. Sloan Research Fellowship and NSF grant CCR-9983832.
1We apologize for leaving out countless further examples.
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into past and present literature, and came across some interesting facts that appear not to
be well known in the computer science community. This paper represents an attempt to
disseminate what I have found.

Perhaps the most interesting discovery is that much of what we in the computer science
community have begun to understand and utilize about power law and lognormal distri-
butions has long been known in other fields, such as economics and biology. For example,
dynamic processes that generate the growth of the Web graph and result in power law
distribution for in- and out-degrees have become the focus of a great deal of recent study.
In fact, extremely similar models date back to at least the 1950’s, and arguably back to
the 1920’s. Second, similar disagreements as to what type of distribution is a better fit
for empirically determined distributions have been repeated across many fields over many
years. The question of whether a lognormal or power law distribution best applies to income
distribution, for example, also dates back to at least the 1950’s. Similar issues continue
to arise in biology [31], chemistry [53], ecology [3, 65], astronomy [66], and information
theory [40, 56]. These cases serve as a reminder that the problems we face as computer
scientists are not necessarily new, and we should look to other sciences both for tools and
understanding.

Another discovery from looking at previous work is that power law and lognormal
distributions are intrinsically connected. Very similar and basic generative models can lead
to either power law or lognormal distributions, depending on seemingly trivial variations.
There is therefore a reason why this argument as to whether power law or lognormal
distributions are more accurate arises and repeats itself across a variety of fields.

The purpose of this paper is to explain some of the basic models that lead to power law
and lognormal distributions, and specifically to cover how small variations in the underlying
model can change the result from one to the other. A second purpose is to provide along
the way (incomplete) pointers to some of the recent and historically relevant scientific
literature.

This paper is intended to be accessible to a general computer science audience. While
mathematical arguments and some probability will be used, the aim is for the mathematics
to be intuitive, clean, and comprehensible rather than rigorous and technical. In some cases
details may be suppressed for readability; interested readers are referred to the original
papers. Also, it should be emphasized that this paper does not contain original work, but
is a survey of the work of others.

2 Basic Definitions and Properties

For our purposes, a non-negative random variable X is said to have a power law distribution
if

Pr[X ≥ x] ∼ cx−α

for constants c > 0 and α > 0. Here f(x) ∼ g(x) represents that the limit of the ratios
goes to 1 as x grows large. Roughly speaking, in a power law distribution asymptotically
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the tails fall according to the power α. Such a distribution leads to much heavier tails than
other common models, such as exponential distributions.

One specific commonly used power law distribution is the Pareto distribution, which
satisfies

Pr[X ≥ x] =
(
x

k

)−α

for some α > 0 and k > 0. The Pareto distribution requires X ≥ k. Usually α falls in the
range 0 < α < 2, in which case X has infinite variance. If α ≤ 1, then X also has infinite
mean. The density function for the Pareto distribution is f(x) = αkαx−α−1.

If X has a power law distribution, then in a log-log plot of Pr[X ≥ x], or the comple-
mentary cumulative distribution function, asymptotically the behavior will be a straight
line. This provides a simple empirical test for whether a random variable has a power
law given an appropriate sample. On a log-log plot the density function for the Pareto
distribution also is a straight line:

ln f(x) = (−α− 1) lnx− α ln k − lnα.

A random variable X has a lognormal distribution if the random variable Y = lnX has
a normal (i.e., Gaussian) distribution. Recall that the normal distribution Y is given by
the density function

f(y) =
1√
2πσ

e−(y−µ)2/2σ2

where µ is the mean, σ is the standard deviation (σ2 is the variance), and the range is
−∞ < y <∞. Hence the density function for a lognormal distribution satisfies

f(x) =
1√

2πσx
e−(ln x−µ)2/2σ2

and the complementary cumulative distribution function for a lognormal distribution is
given by

Pr[X ≥ x] =
∫ ∞

z=x

1√
2πσz

e−(ln z−µ)2/2σ2

dz.

We will say that X has parameters µ and σ2 when the associated normal Y has mean µ
and variance σ2, where the meaning is clear. The lognormal distribution is skewed, with
mean eµ+ 1

2
σ2

, median eµ, and mode eµ−σ2
. A lognormal distribution has finite mean and

variance, in contrast to the power law distribution under natural parameters.
Despite its finite moments, the lognormal distribution is extremely similar in shape to

power law distributions, in the following sense: if X has a lognormal distribution, then in a
log-log plot of the complementary cumulative distribution function or the density function,
the behavior will be a straight line except for a large portion of the body of the distribution.
Intuitively, for example, the complementary cumulative distribution function of a normal
distribution appears close to linear. Indeed, if the variance of the corresponding normal
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distribution is large, the distribution may appear linear on a log-log plot for several orders
of magnitude.

To see this, let us look the logarithm of the density function, which is easier to work
with than the complementary cumulative distribution function (although the same idea
holds). We have

ln f(x) = − ln x− ln
√

2πσ − (ln x− µ)2
2σ2

. (1)

If σ is sufficiently large, then the quadratic term above will be small for a large range of
x values, and hence the logarithm of the density function will appear almost linear for a
large range of values.

Finally, recall that normal distributions have the property that the sum of two normal
random variables Y1 and Y2 with µ1 and µ2 and variances σ2

1 and σ2
2 respectively is a normal

random variable with mean µ1 + µ2 and variance σ2
1 + σ2

2 . It follows that the product of
lognormal distributions is again lognormal.

3 A Model that Generates Power Law Distributions

We now move from mathematical definitions and properties to generative models. For
the power law distribution, we begin by considering the World Wide Web. The World
Wide Web can naturally be thought of as a graph, with pages corresponding to vertices
and hyperlinks corresponding to directed edges. Empirical work has shown indegrees and
outdegrees of vertices in this graph obey power law distributions. There has subsequently
been a great deal of recent theoretical work on designing random graph models that yield
Web graphs [6, 13, 16, 21, 34, 35, 37, 38]. Hence an important criterion for an appro-
priate random graph model is that it yields power law distributions on the indegrees and
outdegrees.

Most models are variations of the following theme. Let us start with a single page, with
a link to itself. At each time step, a new page appears, with outdegree 1. With probability
α < 1, the link for the new page points to a page chosen uniformly at random. With
probability 1 − α, the new page points to page chosen proportionally to the indegree of
the page. This model exemplifies what is often called preferential attachment; new objects
tend to attach to popular objects. In the case of the Web graph, new links tend to go to
pages that already have links.

A simple if slightly non-rigorous argument for the above model goes as follows [21, 35].
Let Xj(t) (or just Xj where the meaning is clear) be the number of pages with indegree j
when there are t pages in the system. Then for j ≥ 1 the probability that Xj increases is
just

αXj−1/t+ (1 − α)(j − 1)Xj−1/t;

the first term is the probability a new link is chosen at random and chooses a page with
indegree j−1, and the second term is the probability that a new link is chosen proportionally
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to the indegrees and chooses a page with indegree j− 1. Similarly, the probability that Xj

decreases is
αXj/t+ (1 − α)jXj/t.

Hence, for j ≥ 1, the growth of Xj is roughly given by

dXj

dt
=
α(Xj−1 −Xj) + (1− α)((j − 1)Xj−1 − jXj)

t
.

The case of X0 must be treated specially, since each new page introduces a vertex of
indegree 0.

dX0

dt
= 1− αX0

t
.

Suppose in the steady state limit that Xj(t) = cj · t; that is, pages of indegree j constitute
a fraction cj of the total pages. Then we can successively solve for the cj. For example,

dX0

dt
= c0 = 1 − αX0

t
= 1 − αc0,

from which we find c0 = 1
1+α

. More generally, we find using the equation for dXj/dt that
for j ≥ 1,

cj(1 + α + j(1 − α)) = cj−1(α+ (j − 1)(1 − α)).
This recurrence can be used to determine the cj exactly. Focusing on the asymptotics, we
find that for large j

cj
cj−1

= 1 − 2 − α
1 + α + j(1− α) ∼ 1 −

(
2 − α
1 − α

)(
1

j

)
.

Asymptotically, for the above to hold we have cj ∼ j−
2−α
1−α , giving a power law. To see this,

note that cj ∼ j−
2−α
1−α implies

cj
cj−1

∼
(
j − 1

j

) 2−α
1−α

∼ 1 −
(
2 − α
1 − α

)(
1

j

)
.

Although the above argument was described in terms of degree on the Web graph, this
type of argument is clearly very general and applies to any sort of preferential attachment.
In fact the first similar argument dates back to at least 1925. It was introduced by Yule
[67] to explain the distribution of species among genera of plants, which had been shown
empirically by Willis to satisfy a power law distribution. While the mathematical treat-
ment from 1925 is different than modern versions, the outline of the general argument is
remarkably similar. Mutations cause new species to develop within genera, and more rarely
mutations lead to entirely new genera. Mutations within a genus are more likely to occur
in a genus with more species, leading to the preferential attachment.
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A clearer and more general development of how preferential attachment leads to a
power law was given by Simon [60] in 1955. Again, although Simon was not interested
in developing a model for the Web, he lists five applications of this type of model in his
introduction: distributions of word frequencies in documents, distributions of numbers of
papers published by scientists, distribution of cities by population, distribution of incomes,
and distribution of species among genera. Simon was aware of Yule’s previous work, and
suggests his work is a generalization. Simon’s argument, except for notation and the scaling
of variables, is painfully similar to the outline above.

It is worthwhile to point out that while these are the earliest references I have found
to mathematical arguments explaining power law distributions, as one might expect from
Simon’s list of applications, power laws had been observed in a variety of fields for some
time. The earliest apparent reference is to the work by Pareto [54] in 1897, who introduced
the Pareto distribution to describe income distribution. The first known attribution of the
power law distribution of word frequencies appears to be due to Estoup in 1916 [23], al-
though generally the idea (and its elucidation) are attributed to Zipf [69, 70, 71]. Similarly,
Zipf is often credited with noting that city sizes appear to match a power law, although
this idea can be traced back further to 1913 and Auerbach [5]. Lotka (circa 1926) found
in examining the number of articles produced by chemists that the distribution followed a
power law [42].

Mandelbrot had developed other arguments for deriving power law distributions based
on information theoretic considerations somewhat earlier than Simon [44]. His argument is
very similar in spirit to other recent optimization based arguments for heavy tailed distri-
butions [14, 68]. We sketch Mandelbrot’s framework. Consider some language consisting
of n words. The cost of using the jth word of the language in a transmission is Cj. For ex-
ample, if we think of English text, the cost of a word might be thought of as the number of
letters plus the additional cost of a space. Hence a natural cost function has Cj ∼ logd j for
some alphabet size d. Suppose that we wish to design the language to optimize the average
amount of information per unit transmission cost. Here, we take the average amount of
information to be the entropy. We think of each word in our transmission as being selected
randomly, and the probability that a word in the transmission is the jth word of the lan-
guage is pj. Then the average information per word is the entropy H = −∑n

j=1 pj log2 pj ,
and the average cost per word is C =

∑n
j=1 pjCj. The question is how would the pj be

chosen to minimize A = C/H. Taking derivatives, we find

dA

dpj
=
CjH + C log2(epj)

H2
.

Hence all the derivatives are 0 (and A is in fact minimized) when pj = 2−HCj/C/e. Using
Cj ∼ logd j, we get a power law for the pj. Mandelbrot argues that a variation of this
model matches empirical results for English quite well.

Indeed, Mandelbrot strongly argued against Simon’s alternative assumptions and deriva-
tions. This led to what is in retrospect an amusing but apparently at the time quite
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heated exchange between Simon and Mandelbrot in the journal Information and Control
[45, 61, 46, 62, 47, 63]. Economists, however, give the nod to Simon. Indeed, a recent
popular economics text by Krugman [36] offers a derivation of the power law similar to
that above.2 A more academic treatment is given by Gabaix [25].

Finally, it is worth noting that before the Web graph became popular, the study of
random trees had already led to power law distributions. Consider the following recursive
tree structure: begin with a root node. At each step, a new node is added; its parent is
chosen from the current vertices with probability proportional to the one plus the number
of children of the node. This is just another example of preferential attachment; indeed, it is
essentially equivalent to the simple Web graph model described above with the probability
α of choosing a random node equal to 1/2. That the degree distribution of such graphs
obey a power law (in expectation) was proven in 1993 [43, 57, 64].

In recognizing the relationship between the recent work on Web graph models and this
previous work, it would be remiss to not point out that modern developments have led to
many new insights. For instance, the current arguments based on martingales are much
more rigorous than Simon’s approach [12, 16, 38]. It has been shown that these models
yield graphs with community substructures, a property not found in random graphs but
amply found in the actual Web [34, 38]. The diameter of these random Web graphs have
also been the subject of recent study [4, 11]. Still, it is interesting to note how much was
already known about the power law phenomenon in various fields well before the modern
effort to understand power laws on the Web, and how much computer scientists had to
reinvent.

4 A Model that Generates Lognormal Distributions

Lognormal distributions are generated by processes that follow what the economist Gibrat
called the law of proportionate effect [26, 27]. We here use the term multiplicative process
to describe the underlying model. In biology, such processes are used to described the
growth of an organism. Suppose we start with an organism of size X0. At each step j, the
organism may grow or shrink, according to a random variable Fj , so that

Xj = FjXj−1.

The idea is that the random growth of an organism is expressed as a percentage of its
current weight, and is independent of its current actual size. If the Fk, 1 ≤ k ≤ j, are all
governed by independent lognormal distributions, then so is each Fj , inductively, since the
product of lognormal distributions is again lognormal.

More generally, lognormal distributions may be obtained even if the Fj are not them-

2One review of Krugman’s book, written by an urban geographer, accuses the author of excessive hubris
for not noting the significant contributions made by urban geographers with regard to Simon’s model [9].
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selves lognormal. Specifically, consider

logXj = logX0 +
j∑

k=1

logFk.

Assuming the random variables logFk satisfy appropriate conditions, the Central Limit
Theorem says that

∑j
k=1 logFk converges to a normal distribution, and hence for sufficiently

large j, Xj is well approximated by a lognormal distribution. In particular, if the logFk

are independent and identically distributed variables with finite mean and variance, then
asymptotically Xj will approach a lognormal distribution.

Multiplicative processes are used in biology and ecology to describe the growth of or-
ganisms or the population of a species. In economics, perhaps the most well-known use
of the lognormal distribution derives from the Black-Scholes option pricing model [10]. In
a simplified version of this setting [17, 30], the price of a security moves in discrete time
steps, and the price Xj changes according to Xj = FjXj−1, where Fj is lognormally dis-
tributed. Using this model, Black and Scholes demonstrate how to use options to guarantee
a risk-free return equivalent to the prevailing interest rate in a perfect market. Other appli-
cations in for example geology and atmospheric examples are given in [20]. More recently,
Adamic and Huberman suggest that multiplicative processes may describe the growth of
links on the Web as well as the growth of user traffic on Web sites [28, 29], and lognormal
distributions have been suggested for file sizes [8, 7, 22].

The connection between multiplicative processes and the lognormal distribution can
be traced back to Gibrat around 1930 [26, 27], although Kapteyn [32] described in other
terms an equivalent process in 1903, and McAlister described the lognormal distribution
around 1879 [48]. Aitchison and Brown suggest that the lognormal distribution may be
a better fit for income distribution than a power law distribution, representing perhaps
the first time the question of which distribution gives the better fit was fully developed
[1, 2]. It is interesting that when examining income distribution data, Aitchison and Brown
observe that for lower incomes a lognormal distribution appears a better fit, while for higher
incomes a power law distribution appears better; this is echoed in later work by Montroll
and Schlesinger [51, 52], who offer a possible mathematical justification discussed below.
Similar observations have been given for file sizes [8, 7].

5 Power Law versus Lognormal Distributions

Although the generative models of the power law and lognormal distributions given above
appear different, they are actually very closely connected. Only small changes from the log-
normal generative process modifies it to a heavy-tailed distribution. To provide a concrete
example, we consider the interesting history of work on income distributions.

Recall that Pareto introduced the Pareto distribution in order to explain income dis-
tribution at the tail end of the nineteenth century. Champernowne [15], in a work slightly
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predating Simon (and acknowledged by Simon, who suggested his work generalized and ex-
tended Champernowne), offered an explanation for this behavior. Suppose that we break
income into discrete ranges in the following manner. We assume there is some minimum
income m. For the first range, we take incomes between m and γm, for some γ > 1; for the
second range, we take incomes between γm and γ2m. We therefore say that a person is in
class j for j ≥ 1 if their income is between mγj−1 and mγj . Champernowne assumes that
over each time step, the probability of an individual moving from class i to class j, which
we denote by pij, depends only on the value of j − i. He then considers the equilibrium
distribution of people among classes. Under this assumption, Pareto distributions can be
obtained.

Let us examine a specific case, where γ = 2, pij = 2/3 if j = i − 1, and pij = 1/3 if
j = i+1. Of course the case i = 1 is a special case; in this case p11 = 2/3. In this example,
outside of class 1, the expected change in income over any step is 0. It is also easy to check
that in this case the equilibrium probability of being in class k is just 1/2k, and hence the
probability of being in class greater than or equal to k is 1/2k−1. Hence the probability
that a person’s income X is larger than 2k−1m in equilibrium is given by

Pr[X ≥ 2k−1m] = 1/2k−1,

or
Pr[X ≥ x] = m/x

for x = 2k−1m. This is a power law distribution.
Note, however, the specific model above looks remarkably like a multiplicative model.

Moving from one class to another can be thought of as either doubling or halving your
income over one time step. That is, if Xt is your income after t time steps, then

Xt = FtXt−1,

where Ft is 1/2 with probability 2/3 and 2 with probability 1/3. Again, E[Xt] = E[Xt−1].
Our previous discussion therefore suggests that Xt should converge to a lognormal distri-
bution for large t.

What is the difference between the Champernowne model and the multiplicative model?
In the multiplicative model, income can become arbitrarily close to zero through successive
decreases; in the Champernowne model, there is a minimum income corresponding to the
lowest class below which one cannot fall. This small change allows one model to produce a
power law distribution while the other produces a lognormal. As long as there is a bounded
minimum that acts as a lower reflective barrier to the multiplicative model, it will yield a
power law instead of a lognormal distribution [25, 33].

Interestingly, another seemingly minor variation on the multiplicative generative model
also yields power law behavior, although this derivation is significantly more recent. Re-
call that in the multiplicative model, if we begin with value X0 and every step yields an
independent and identically distributed multiplier from a lognormal distribution F , then
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any resulting distribution Xt after t steps is lognormal. Suppose, however, that instead of
examining Xt for a specific value of t, we examine the random variable XT where T itself
is a random variable. As an example, when considering income distribution, in seeing the
data we may not know how long each person has lived. If different age groups are inter-
mixed, the number of multiplicative steps each person may be thought to have undergone
may be thought of as a random variable.

This effect was noticed as early as 1982 by Montroll and Schlesinger [51, 52]. They
show that a mixture of lognormal distributions based on a geometric distribution would
have essentially a lognormal body but a power law distribution in the tail. Huberman and
Adamic suggest a pleasantly simple variation of the above result; in the case where the time
T is an exponential random variable, and we may think of the number of multiplicative
steps as being continuous, the resulting distribution of XT has a power law distribution
[28, 29].

In more recent independent work, Reed provides the correct full distribution for the
above model, which yields what he calls a double Pareto distribution [58]. Specifically, the
resulting distribution has one Pareto tail distribution for small values (below some point)
and another Pareto tail distribution for large values (above the same point).3

For example, consider for simplicity the case where if we stop a process at time t the
result is a lognormal random variable with mean 0 and variance t. Then if we stop the
process at an exponentially distributed time with mean 1/λ, the density function of the
result is

f(x) =
∫ ∞

t=0
λe−λt 1√

2πtx
e−(ln x)2/2tdt.

Using the substitution t = u2 gives

f(x) =
2λ√
2πx

∫ ∞

u=0
e−λu2−(ln x)2/2u2

du.

An integral table gives us the identity

∫ ∞

z=0
e−az2−b/z2

=
1

2

√
π

a
e−2

√
ab,

which allows us to solve for the resulting form. Note that in the exponent
√

2ab of the
identity we have b = (lnx)2/2. Because of this, there are two different behaviors, depending

on whether x ≥ 1 or x ≤ 1. For x ≥ 1, f(x) =
(√
λ/2

)
x−1−√

2λ, so the result is a power

law distribution. For x ≤ 1, f(x) =
(√
λ/2

)
x−1+

√
2λ.

The double Pareto distribution falls nicely between the lognormal distribution and the
Pareto distribution. Like the Pareto distribution, it is a power law distribution. But
while the log-log plot of the density of the Pareto distribution is a single straight line, for

3For completeness we note that Huberman and Adamic give an incorrect form of the density function;
they miss the two-sided nature of the distribution. Reed gives the correct form, as we do below.
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Figure 1: Shapes of lognormal and double Pareto distributions.

the double Pareto distribution the log-log plot of the density consists of two straight line
segments that meet at a transition point. This is similar to the lognormal distribution,
which has a transition point around its median eµ due to the quadratic term, as shown in
equation (1). Hence an appropriate double Pareto distribution can closely match the body
of a lognormal distribution and the tail of a Pareto distribution. For example, Figure 1
shows the complementary cumulative distribution function for a lognormal and a double
Pareto distribution. (These graphs have only been minimally tuned to give a reasonable
match.) The plots match quite well with a standard scale for probabilities, but on the
log-log scale one can see the difference in the tail behavior.

Reed also suggests a generalization of the above called a double Pareto-lognormal dis-
tribution with similar properties [59]. The double Pareto-lognormal distribution has more
parameters, but might allow closer matches with empirical distributions.

It seems reasonable that in many processes the time an object has lived should be
considered a random variable as well, and hence this model may prove more accurate for
many situations. For example, that the double Pareto tail phenomenon could explain why
income distributions and file size distributions appear better modeled by a distribution
with a lognormal body and a Pareto tail [1, 8, 7, 51, 52]. Reed presents empirical evidence
for the double Pareto and double-Pareto lognormal distributions for incomes and other
applications [58, 59].

More generally, the above result shows that natural mixtures of lognormal distributions
may lead to power law distributions. Finding other interesting similar cases is an open
problem.

6 Conclusions

Power law distributions and lognormal distributions are quite natural models and can
be generated from simple and intuitive generative processes. Because of this, they have
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appeared in many areas of science. This example should remind us of the importance of
seeking out and recognizing work in other disciplines, even if it lies outside our normal
purview. Since computer scientists invented search engines, we really have little excuse.
On a personal note, I was astounded at how the Web and search engines have transformed
the possibilities for mining previous research; many of the decades-old articles cited here
are in fact available on the Web.

It is not clear that the above discussion settles one way or another whether lognormal
or power law distributions are better models for things like file size distributions. Given the
close relationship between the two models, it is not clear that a definitive answer is possible;
it may be that in seemingly similar situations slightly different assumptions prevail. The
fact that power law distributions arise for multiplicative models once the observation time
is random or a lower boundary is put into effect, however, may suggest that power laws
are more robust models. Indeed, following the work of Reed [58, 59], we recommend the
double Pareto distribution and its variants as worthy of further consideration in the future.

From a more pragmatic point of view, it might be reasonable to use whichever distri-
bution makes it easier to obtain results. This runs the risk of being inaccurate; perhaps in
some cases the fact that power law distributions can have infinite mean and variance are
salient features, and therefore substituting a lognormal distribution loses this important
characteristic. Determining guidelines for cases where a power law distribution cannot be
suitably approximated by a lognormal for simulation or other practical purposes would be
useful.
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