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Abstract

An explanation for the rank-size distribution for human settlements based
on simple stochastic models of settlement formation and growth is presented.
Not only does the analysis of the model explain the rank-size phenomenon in
the upper tail, it also predicts a reverse rank size phenomenon in the lower
tail. Furthermore it yields a parametric form (the double Pareto-lognormal
distribution) for the complete distribution of settlement sizes. Settlement-
size data for four regions (two in Spain and two in U.S.A.) are used as
examples. For these regions the lower tail rank-size property is seen to hold
and the double Pareto-lognormal distribution shown to provide an excellent
fit, lending support to the model and to the explanation for the rank-size

law.

Keywords: Rank-size distribution; Zipf’s law; Pareto law; lower-tail rank-
size property; Gibrat’s law; Yule process; mixture model; double Pareto-

lognormal distribution.



1 INTRODUCTION.

It is a remarkable fact that the distribution of city sizes exhibits a high
degree of regularity across various countries and periods in history. This
observed phenomenon is often referred to as Zipf’s Law, after Zipf (1949)
who observed that the logarithm of population size when plotted against the
logarithm of the rank of the city produced points close to a straight line,
with negative slope. Nowadays (e.g. Brakman et al., 1999, Gabaix, 1999),
the term Zipf’s Law is often used to refer exclusively to the case of a slope
of negative one (rank inversely proportional to size) while for more general
negative slope the term rank-size distribution is used. It is well known that
this phenomenon is closely related to the Pareto law of incomes and that a
probabilistic way of stating the law is that city sizes above a certain threshold
size follow a Pareto (or power law, or fractal) distribution. There have been
many attempts to explain this observed regularity. Suh (1987) divides these
into two classes: (i) hierarchical models based on microeconomic assumptions
(see e.g. Allen and Sanglier, 1979, 1981 and the many papers cited in the
review of Mulligan, 1984); and (ii) stochastic models which seek to explain the
observed distribution as a consequence of simple probabilistic assumptions
concerning the formation and growth of cities (see e.g. Simon, 1955, Steindl
1965, 1968). However none of the attempts from either side has been wholly
successful. At least one author (Sheppard, 1982) has questioned the value of

such attempts, claiming that the rank-size law is a ‘profoundly over-identified



concept’.

Nonetheless as recently as 1999 Brakman et al. described the rank-size
distribution as ‘an empirical regularity in search of a theory.” These authors
offered an explanation using a general equilibrium approach in a model which
incorporated negative feedbacks due to congestion in a common model of
economic geography. Although this model was capable of producing size
distributions mimicking the rank-size distribution, the results like those of
all previously proposed explanations, are not totally satisfactory in that they
can explain the observed distributions only for cities above a certain threshold
size. A recent paper by Gabaix (1999) uses a stochastic model employing
Gibrat’s law of proportional effects (Gibrat, 1931) to describe city growth.
The paper, similar in spirit to that of Champernowne (1953) on the Pareto
law of incomes, offers an explanation of why the rank-size phenomenon should
hold and why the exponent should be unity (i.e. why Zipf’s law rather than
the more general rank-size law should hold). Although empirical studies
(e.g. Rosen and Resnick, 1980) have indicated the frequent occurrence of
exponents different from one, Gabaix claims that this fact can be explained as
a consequence of finite sample sizes. If this is the case one would expect that
the magnitude of the deviations from unity should be negatively correlated
with the number of cities in the study. Unfortuantely this does not appear
to be the case. For example Rosen and Resnick examined 44 countries, using
the largest 50 cities in each, except for six countries in which there were

more than 50 cities of size larger than 100,000. For these six countries (with



respectively 59, 91, 138, 149, 151 and 225 cities larger than 100,000), the
calculated exponents (ranging between 1.153 and 1.289) were between the
29th. and 39th. largest of the 44 calculated. The U.S.S.R.with 225 such
cities had an exponent of 1.278, the 38th. largest of the 44. This does not
appear to be compatible with Gabaix’s explanation for deviations from unity.

Discussion of city size distributions and the rank-size property has appar-
ently been confined to cities above a certain threshold size. While there have
been investigations on the magnitude of the threshold, (e.g. Guerin-Pace,
1995), there appears to have been little discussion of the size distribution in
its entirety. This article offers an explanation for the observed size distri-
bution of human settlements which holds over the whole range of observed
sizes and for which the rank-size (Pareto) property holds in the upper tail.
In addition a reverse rank-size property will be predicted and seen to hold
empirically in the lower tail. The model is based on very simple probabilistic
assumptions about the formation and growth of settlements, which reflect the
inherent variability (from settlement to settlement and over time) in these
processes.

Thus the explanation for the observed regularity in the size distribution
is essentially mathematical in that it is a consequence of stochastic processes
with certain characteristics. This does not mean that geographic, economic
and other factors are not important in determining the growth and eventual
size of any city. Rather it means that when looking at the distribution of set-

tlement sizes over a whole region, the effects of the variation in these factors



can be modelled effectively by stochastic processes; and the mathemetical
analysis of these processes leads to a convincing explanation.

Being mathematical, the explanation is not confined to settlement size
distributions, but should be relevant for other pheneomena with similar un-
derlying structure. As recognized by others (e.g. Steindl, 1968; Gabaix,
1999), the Pareto law of incomes is one such phenomenon, and indeed a
very similar model to the one used herein has been proposed to explain (and

extend) this law (Reed, 1999).

2 A STOCHASTIC MODEL FOR THE FOR-
MATION AND GROWTH OF SETTLE-
MENTS.

The foundation and subsequent growth of human settlements depends upon
many things including for example geographic, economic and demographic
factors. Rather than attempt to model these factors and their interactions as
has been attempted in many hierarchical models, in this paper a ‘macro’ view
will be adopted, and the differences between settlements will be regarded as
essentially random or unexplained components in a basic underlying model.
Thus we will present a stochastic model, which comprises two components,
one for the foundation of settlements and the other for their subsequent
evolution after foundation. From these component models a probability dis-
tribution for the current size of settlements will be derived and its properties

discussed, as well as how this theoretical size distribution can be fitted to



empirical data. We consider first the evolution of settlements after their
foundation.

Individual human settlements grow (and sometimes contract) in different
and varying ways. The (proportional) rate of growth in size in a given year
will vary from settlement to settlement and for a given settlement will likely
vary from year to year (or decade to decade etc.), depending on economic,
demographic factors, etc. At a macro level this variability can be modelled
mathematically by assuming that the logarithm of population size for any
settlement constitutes a realization of a random walk. This is Gibrat’s law of
proportional effects (Gibrat, 1931). For analytic convenience in this paper the
continuous-time version of this model will be used i.e. the size (population)
X (t) of a settlement will be assumed to follow Geometric Brownian Motion

(GBM) governed by the Ito stochastic differential equation
dX = pXdt + o Xdw. (1)

where dw is white noise (i.e. the random increment of a Wiener process in
time dt). The parameter u is the mean proportional growth rate over all
settlements and all times, and o is a parameter reflecting the variability in
this growth rate. Thus the proportional growth dX/X in time dt for any
settlement will comprise a systematic component udt (reflecting the average
growth rate over all settlements, at all times) and a random component odw
(reflecting what happened for the particular settlement at the particular

time).



This is the model for settlement growth used by Gabaix (1999), who cites
empirical studies justifying Gibrat’s law. However unlike Gabaix, in this
paper we shall not be looking at equilibrium conditions and thus will not
need to assume the existence of a minimum city size acting as a reflecting
boundary.

If the initial size of the settlement (at time of foundation) is Xy, then
under the GBM model the size XT of the settlement 7" time units later will

be a lognormal random variable with
In X7 ~ N(Xo + (u — 6%/2)T, 0*T) (2)

Settlements currently in existence were founded at different times and doubt-
less had different initial populations. Thus for any given settlement in the
country or region under consideration, the variables X, and T should be
considered as random variables. A simple specification for the distribution

of the initial size, Xy, would be that it is of a lognormal form with
In Xo ~ N(,u07 O-(%)

This has the desirable properties that initial size would always be non-
negative, with the variance increasing with the mean. It is possible that
the distribution of starting sizes has changed over time (e.g. agricultural
settlements likely were initially smaller than industrial ones etc.). One can
easily accommodate this by assuming that X, also evolves as a GBM. It
makes no essential difference to the development to include this, but for the

sake of simplicity of exposition the details are relegated to the Appendix.
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The time since foundation will vary from settlement to settlement and
its distribution over all settlements in the region will reflect the region’s his-
torical development, which of course will have depended on many diverse
factors. As with the evolution of settlements, we will ignore all of the details
and instead model settlement foundation with a simple stochastic process.
The simplest stochastic model that one could assume is that foundations
occurred in a Poisson process over the last 7 time units (i.e. they occurred
randomly and independently at a constant average rate). This model how-
ever is limited in that it does not allow for overall growth in the region. A
more realistic model results from assuming that in the time interval (¢, ¢+ dt)
any existing settlement can form a new satellite settlement with probability
Adt. This is a Yule process first proposed by Yule (1924) as a model for the
creation of new biological species, a process similar in many respects to the
foundation of new human settlements. For such a process the expected num-
ber of settlements, ¢ time units after the foundation of the first settlement, is
e, In other words the number of settlements is growing, on average, at the
proportional rate A. It should be noted however that the actual evolution
of the number of settlements is a random process. For this model one can
show that the distribution of the time 7' since foundation of a settlement
currently in existence, is of the form of an exponential distribution truncated

at 7 (the age of the first settlement), with an atom of probability (reflecting

the probability that the given settlement is the oldest) of size 1\123: at the

point 7. In most cases it is probably reasonable to assume that 7 is large, and



thus to consider the limiting distribution as 7 — oo. This is an exponential
distribution with density Ae=** for t > 0.

Under the Yule process model for the foundation of settlements and the
GBM model for their subsequent growth, the distribution of the current
size, X, over all settlements, can be obtained by integrating the density of
lognormal distribution of Xr with respect to the exponential distribution
of T. This can be done analytically (see Appendix) yielding a probability
density for X of the form

[z(x) = % [:U_O‘_l exp{apy + ool /2}P (4(11”75:27%2) + 3)

27 exp{ By + o /2y (et )

on r > 0 where ® is the cumulative distribution function of the standard
normal distribution; ®¢ =1 — ®; and a and —f («, > 0) are the roots of a
characteristic quadratic equation (See Appendix). This distribution will be
called (for reasons made clear in the Appendix) the double Pareto-lognormal
distribution (dPIN) (Reed, 1999). The possible shapes of the density (both
in natural and logarithmic scales) in the cases § > 1 and 3 < 1 are presented
in Reed (2000a).

The dPIN distribution has the property that it follows (different) power

laws in its two tails 7.e.
fx(@)~ 2707t (2= o00);  fx(z) ~2"t (2= 0).

The first result indicates that for large x, the distribution of size follows

a Pareto law (i.e. In(Pr(X > z)) is linearly related to In(z) with slope



—a < 0); and the second result indicates a reverse Pareto law for small z,
(i.e. In(Pr(X < z)) is linearly related to In(x) with slope 3 > 0). The upper-
tail Pareto law has been widely verified empirically (the rank-size law), but
nobody apparently has looked for a lower-tail (reverse) rank-size law. But
it does indeed hold. In Reed (2000, b) a logarithmic plot of the (ascending)
rank against size for the smallest 5000 settlements for the U.S.A in 1998
is given (as well as a similar plot of (descending) rank against size for the
largest, 5000 settlements). The degree of linearity in the lower-tail plot is
even more striking than that for the upper-tail plot, confirming empirically
the presence of the lower-tail rank-size property.

To fit the dPIN distribution to settlement-size data with independent(")
observations on n settlements of size z1, s, ..., x, by maximum likelihood

(ML) one needs to maximize the log-likelihood

- g”lln(fx(xi)) ()

over the four parameters «, 3, i, 0. This can be done numerically (e.g. using
the S-Plus routine nlminb (Anon, 1997)). Plausible starting values for o and
B can be found by regressing (on log-log scales) descending rank wvs. size for
large settlements; and ascending rank ws. size for small settlements. Using
these values starting values for y and o can be found by the method of
moments. Specifically if &, 3 are the starting values for «, 3, starting values

for u, 0 can be determined as

f-—a . B—a’ ad + 33
af ’ 0_\ISQ+( af ) _2a2ﬂ2(a+ﬂ)
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where 7 and 8; are the mean and sample variance of the logarithms of ob-

served sizes.

3 EXAMPLES.

The dPIN distribution was fitted to four empirical settlement size distribu-
tions - those of two U.S. states® in 1998 and of two Spanish provinces®
in 1996. These examples were chosen because the datasets include even
very small settlements (with fewer than 100 inhabitants — the smallest, in
Barcelona province, has just 30 inhabitants). In each country one relatively
heavily populated region (California and Barcelona respectively) and one rel-
atively lightly populated region (West Virginia and Cantabria) were selected.

Figs. 1 and 2 show rank-size plots, in the upper and lower tails. Notice
how the lower-tail plots exhibit linearity (at least as much as do the upper-
tail plots) thereby empirically confirming the lower-tail Paretian behaviour
predicted by the model of the previous section.

Further support for the model can be found by fitting the dPIN model to
the four datasets using maximum likelihood, by numerically maximizing the
log-likelihood (4) as outlined in the previous section. The ML estimates of
the four parameters are presented in Table 1.

The fit of the model can be assessed by comparing the observed and fitted
distributions as is done in Figs. 3 and 4. In particular Q-Q plots (of observed
vs. fitted quantiles) provide a good method of revealing lack of fit. Lack of

fit is suggested if the plotted points exhibit systematic departures from the
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45 degree line. This is not evident here, although the corresponding plots for
other suggested distributional forms, such as the lognormal and truncated
lognormal, do indicate lack of fit. From Figs. 3 and 4 it is clear that the
dPIN distribution provides a good fit to the data in each region. Given the
adequacy of the model one can proceed to use asymptotic likelihood ratio
(LR) tests to formally test hypotheses concerning parameters. For example
a test of Zipf’s law (in the upper tail) against the more general rank-size law
is obtained by testing Hy : @ = 1 vs. Hy : a # 1. The results for this test
indicate that the data are compatible with Zipf’s law for the more lightly
populated regions (W. Virginia, P = 0.56; Cantabria P = 0.67) but not so
for the more heavily populated ones (California, P = 0.00001; Barcelona,
P = .0002).

Comparisons between any two regions can also be made. For example for
two regions the LR test statistic for testing Hy : oy = «ag; B1 = [o; 1 =
ll9; 01 = 09 against a general alternative is obtained as twice the difference in
the maximized log-likelihood for the model fitted to data for the two regions
pooled and its sum for the model fitted to each region separately. For the
U.S.A. comparing W. Virginia and California yields a value of 536.4, which
on comparison with X%4) yields a minuscule P-value. Similarly comparing
Cantabria and Barcelona yields a LR test statistic of 22.32 and a P = 0.0002.
Thus (as a glance at the histograms will confirm) there is strong evidence
of differences in the size distributions of the two regions in the USA, and

similarly of the two regions in Spain. Comparisons between California and
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Barcelona, and between W. Virginia and Cantabria also yield very small

P-values, and thus significant differences within each pair.

4 OTHER MODELS FOR THE FORMATION
OF SETTLEMENTS.

The double Pareto-lognormal distribution for settlement size is based on the
assumption that settlements were formed in a Yule process, for which the
probability of a new settlement in an infinitesimal time increment is propor-
tional to the current number of settlements. This is a stochastic version of
exponential growth (in the number of settlements). As mentioned in Sec. 2
another possible model would be that settlements were formed in a Poissson
process, over the last 7 years, for which the probability of a new settlement
in an infinitesimal time increment is the same at all times. For this model
the time 7T since formation of a randomly chosen settlement is uniformly
distributed on [0,7]. The corresponding distribution for the size X of any
settlement can be derived. The resulting density (Reed, 1999) looks very sim-
ilar to that of the dPIN, being unimodal and exhibiting Paretian behaviour in
the upper tail if 4 > 0 (and in the lower tail if < 0). It has four parameters
(in addition to 7), which can be estimated by maximum likelihood, using a
log-likelihood of the form (4) with the appropriate density. For the datasets
for the four regions in Sec. 3, the maximized log-likelihood for this model was
in all cases (using a variety of values of 7) somewhat less than that for the

dPLN model, indicating less evidence to support this model (Royall, 1997).
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However in some cases (e.g. Barcelona) the reduction was not large.

It is of course possible to postulate other models for the formation of
settlements, and corresponding distributions for the random variables 7" and
X. However the more complicated the model, the more difficult it becomes to
determine closed-form expressions for the distribution of the random variable
T, and the corresponding distribution of current size X. This will not be
pursued further, save for noting that the dPIN model would still pertain in
the case in which settlements were formed following a Yule process for a
certain period (say the time interval [y, 75]) with no new settlements since
that time. In this case the mixing distribution for 7" would be a shifted
exponential distribution. The resulting distribution of current size, X, would
still be dPIN with p.d.f. given by (3). The only difference would be that the
parameters jg, o would not now represent the mean and and variance of the
initial size of settlements. Rather they would represent the corresponding
parameters for the current size of settlements established at the end of the
foundation period (i.e. at time 73). This could be an explanation for the

rather large values of the ML estimates of 1y obtained in Sec. 3.

5 CONCLUSIONS.

The main result of this paper is to show that there is a simple explanation
for the observed phenomenon known as the rank-size law regarding the size
distribution of human settlements. In addition to explaining the rank-size

law, the analysis predicts the existence of a reverse rank-size law and yields a
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parametric form for the size disrtribution over its full range. An examination
of the empirical size distributions for four regions confirms the predicted
lower-tail rank-size property, as well as indicating an exceptionally good fit
for the theoretically derived parametric form, thereby lending support to the
model and to the explanation for the rank-size law.

The reason behind the rank-size phenomenon is shown to be essentially
mathematical. It does not require economic or geographic assumptions re-
lating to natural resources, production, consumption, communications, con-
gestion etc. This does not mean that these factors are not important in the
evolution of human settlements (indeed few would disagree that these are
major factors influencing the growth of a region or city). Rather it means
that, from a certain ‘macro’ point of view, variations in these factors across
settlements and over time, can be viewed as following a certain distribu-
tions, and that their compound effect on the foundation and evolution of any
particular settelement can be viewed as essentially random components in a
stochastic model.

This is analogous to the way in which the central limit theorem can be
used to explain the widespread occurrence of the normal (Gaussian) distri-
bution in Nature (e.g. human heights, tree diameters, fishes length etc.).
By recognizing that the normal distribution results from the summation (or
integration) of large numbers of essentially independent random increments,
does not mean that physical and biological factors (climate, nutrient avail-

ability, competition etc.) are not important in determining tree diameters
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and fishes lengths. On the contrary they are of primary importance. How-
ever it is the variability in these factors over time and between trees, fishes
etc. which leads to variable growth, and it is the aggregation of the effects
of these variable factors that leads to the normal distribution. In a similar
way it is the aggregation of variable geographic and economic factors which
leads to rank-size property for settlement size.

To explain the size of a particular city one needs to look at the details
of its geography, its economic evolution and many other things (just as to
explain the diameter of a particular tree one needs to look at physical and
biological factors which have affected its growth). However to explain the
distribution of sizes of settlements this turns out not to be necessary, because
of mathemetical results concerning the interactions of factors which vary over
time and from settlement to settlement and which can thereby be regarded as
essentially random. The main difficulty in doing this is a modelling one - 7.e.
specifying plausible stochastic models describing the variability in the foun-
dation and evolution of settlements. This has been accomplished by using
a Yule process to describe foundations and Gibrat’s law for the subsequent
evolution of settlement size.

The connection with the central limit theorem goes beyond analogy. For
objects following Gibrat’s law the proportional rate of growth varies non-
systematically with time. This results in the size of the object after a fized
time following a lognormal distribution (in the logarithmic scale the central

limit theoerem ensures that the sum of many variable components converges
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to a normal distribution). The reason why settlement sizes do not follow
a lognormal distribution, is that they have not all been following Gibrat’s
law for the same length of time. Thus the overall distribution of sizes is
a mixture of lognormal distributions.®) The mixing parameter is the time
T since foundation. In the paper a plausible model for the foundation of
settlements has been used leading to an exponential distribution for 7" and
to the double Pareto-lognormal distribution for settlement size.

Although the specification of the growth process and the foundation pro-
cess have been quite specific (geometric Brownian motion and Yule process,
respectively), it is quite possible that similar results would hold with more
loosely specified processes. For example using a uniform mixing distribution,
resulting from a Poisson process model for the foundation of settlements, ap-
parently does not greatly affect the qualitative properties of the resulting size
distribution. It seems quite plausible that similar results could hold for other
mixing distribution, arising from other settlement foundation processes. Ge-
ometric Brownian motion can be thought of as a convenient approximation
for other ‘geometric’ (i.e. multiplicative) processes, in which the logarithm of
size evolves with increments having some common distribution e.g. a geomet-
ric random walk, or a geometric Poisson jump process. No doubt the growth
of human settlements often involves periods of rapid growth, interspersed
with with slack periods of little or no growth, or even decline. However the
essential ‘geometric’ property (for which proportional rates are the essential

random quantities) is likely to hold, and thus GBM is likely to provide a
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reasonable approximation.

Another implicit assumption in the models is that of independence - that
settlements are established and grow independently of one another. Undoubt-
edly this is not exactly true. However it can serve as a first approximation
and since it leads to a model which, with all of its oversimplifications, leads
to a distribution which fits the data well, it is perhaps not necessary to be
more elaborate.

Like any good model, the one considered here leaves out more than it
includes. However it does apparently capture the essence of the underlying
mechanism behind the rank-size phenomenon. Simply put, the main claim
of this paper is that the rank-size phenomenon can be explained by the fact
that settlements have been growing in a varying, geometric way (i.e. with
varying growth rates) for different lengths of time, and that when this fact
is included it can lead (as Steindl pointed out more than 30 years ago) to
a distribution exhibiting the familiar rank-size phenomenon for the largest
settlements, as well as fitting empirical size distributions over the full range
of sizes and predicting a rank-size phenomenon in the lower tail.

Acknowledgements. I gratefully acknowledge the useful comments of
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Notes.

1. If the observations are not independent, the true log-likelihood will not be
of the form (4). However one can still justify parameter estimates obtained by
maximizing (4) as those which minimize the Kullback-Leibler information of the
data with respect to the model. Barndorff-Nielsen (1977) refers to the procedure
as mazximum likeness estimation.
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2. http://www.census.gov/population/www/estimates/cityplace.html.
A web page of U.S. Census Bureau.

3. http://www.ine.es/htdocs/inre/inre51/pobframe.htm. A web page of
Spain’s Instituto Nacional de Estadistica.

4. Tt is worth noting that Steindl (1965, 1968) identified the interaction between
the evolution and foundation processes as the key to explaining Paretian behaviour
in the upper tail of observed size distributions of firms and cities.
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APPENDIX

Derivation of the distribution of the current size of set-
tlements.

Under the assumptions of the model of Sec. 2, the size, X7, of a settlement founded
a fized time T years ago, with an initial size of X, has a lognormal distribution,
with

~ 2
Vi = In(X7) ~ N (XO (- %)T, 02T> ,

(equation(2)). If the initial size X follows a lognormal distribution with parame-
ters po and o3, then size X7 is lognormally distributed with
o2

Yr =In(Xr) ~ N (Mo +-

)T, op + 02T> (5)

The moment generating function (m.g.f.) of Y is

My, (0) = E (eeYT) = exp <u09 +036%/2 +

(u— %2)9 + 0202/21 T)

The distribution of the logarithm of the current size of a randomly selected set-
tlement, Y, say, can be obtained by integrating the density of Y with respect
to the distribution of T'. Alternatively its m.g.f. can be found, using conditional

expectations, as

My (0) = B (exp(6)) = By (Byir (exp(8Y))) = Ex (My,(6))

which from the above can be written
2,2 o’ 212
Mf/(e) = exp (p00+000 /2) MT ([,L—?)H—l-a 0 /2 .
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If T is exponentially distributed with parameter A, then the m.g.f. of T is

My () = 2 from which it follows that

(A=)
Nexp (uod + 026%/2
My(o) = 2ol 1ot 2)
A= (u—%F)0— %50
of
= exp (,U09+0'(2)02/2) W

where @ and —f (o, 8 > 0) are the two roots of the characteristic (quadratic)

equation
2 2
o° o
57 + (p 2)z A=0. (6)
Now it is easily confirmed that % is the m.g.f. of the double exponential

distribution (or asymmetric Laplace distribution) with density function

%eﬁm ifz <0
JE) = e ar g4 0

P 1o
Also since exp (o6 + 0560?/2) is the m.g.f of an N(ug,08) random variable, it
follows that the distribution of Y can be represented as that of the sum of inde-
pendent normal and double exponential random variables. From this it follows
that the distribution of X = ¥ can be represented as that of the product of in-

dependent random variables, U and V say, one (U) with a lognormal distribution

and the other (V) with a double Pareto (dP) distribution with p.d.f

af -1 forv<1
= ot ’ - 7
1) { % vl forv>1 (7)

which is the distribution of the exponentaial of a random variable with the above
double-exponential distribution. This representation of the distribution of X as

the product of lognormal and double Pareto components is the reason for the
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name double Pareto-lognormal (dPIN) distribution (see Reed, 2000 for more on
properties of the dPIN distribution).

The p.d.f. of X can be obtained from the p.d.f. of ¥ = In(X) which in turn
can be found by convolving a double exponential density with a normal density.

The details are tedious and are omitted. The result is
foly) = 285 [emotvmoratol/zg (Voromech) | "
eBy—Ho)+5%03 /2 e (%)]

from which the p.d.f (3) of X in Sec. 2 follows. The observed sizes of n set-
tlements can be thought of as the realizations of n independent, identically dis-
tributed random variables all with the above distribution. The log-likelihood for
such observations is thus (4).

Consider now the situation in which the distribution of the initial size of set-
tlements evolves in time. If at some base reference time it followed a lognormal

distribution with mean and variance parameters Ay and B2 and it subsequently

evolved in time following the GBM
dX() = Qg X()dt + b() X() dW(),

then t time units after the reference time it would follow a lognormal distribution
with mean and variance parameters Ag + (ag — b3/2)t and B + b3t. If the base
reference time is, say, 7 time units before the present time, the distribution of the
starting size of a settlement founded 7' time units ago will be lognormal with mean
and variance parameters Ag + (ag — b3/2)(T — T) and B2 + b3(7 — T). Replacing

po and o above by these quantities, leads to X7 having a lognormal distribution

. 2 0% b3 2, 12 2 _ 12
with parameters Ao + (ao — b5/2)7 + (1 — ag — —5—2)T and Bg + b7 + (0 — bg) T
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This is of the same form as (5), with both the mean and variance parameters being
linear functions of 7' (with u replaced by u—ag; o2 replaced by o2 —bZ; o replaced
by Ao + (ap — b3/2)7; and o3 replaced by B + b37). With these replacements the
derivation of the double Pareto-lognormal distribution for the current size of a

randomly selected settlement follows as before.
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TABLE 1: Maximum likelihood estimates of the four parameters (o, 3, uo
and og) for the double Pareto-lognormal distribution fitted to the empirical size

distributions for the four regions discussed in Sec. 3.

a B fho 0o
W. Virginia 98 1.09 4.71 6.26 0.883
California ‘98 1.87 0.991 10.43 0.861
Cantabria "96 1.08 1.46 7.20 0.453
Barcelona 96 1.28 3.03 7.19 1.67
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Figure captions.

Fig. 1 Rank-size plots for two American states. The top row shows lower-
tail rank-size plots (population-size vs. ascending rank in logarithmic scales) for
the smallest 50 settlements in respectively West Virginia and California. The
bottom row shows the more familiar upper-tail rank-size plots (population size vs.
descending rank in logarithmic scales) for the largest 50 settlements in each of the
two states. The linear fit is at least as good in the lower tail as in the upper tail.

Fig. 2 Rank-size plots for two Spanish provinces. The top row shows lower-tail
rank-size plots (population-size vs. ascending rank in logarithmic scales) for the
smallest 50 settlements in respectively Barcelona and Cantabria provinces. The
bottom row shows the more familiar upper-tail rank-size plots (population size vs.
descending rank in logarithmic scales) for the largest 50 settlements in each of the
two provinces. The linear fit is at least as good in the lower tail as in the upper
tail.

Fig. 3 The double Pareto-lognormal model fitted to W. Virginia data (top row)
and to California data (bottom row). The three panels in each row show (from
left to right): the fitted density superimposed on a histogram of size (logarithmic
scale); the fitted density (dotted line) plotted against size (both on logarithmic
scales) superimposed on empirical density; Q-Q plot of observed quantiles against
fitted quantiles, both on logarithmic scales, with a 45° line (dotted).

Fig. 4 The double Pareto-lognormal model model fitted to Cantabria data (top
row) and to Barcelona province data (bottom row). The three panels in each row
show (from left to right): the fitted density superimposed on a histogram of size
(logarithmic scale); the fitted density (dotted line) plotted against size (both on
logarithmic scales) superimposed on empirical density; Q-Q plot of observed quan-
tiles against fitted quantiles, both on logarithmic scales, with a 45° line (dotted).
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