
An Extensible, Modular Architecture for

Simulating Urban Development,

Transportation, and Environmental Impacts

Michael Noth∗ Alan Borning

Dept. of Computer Science & Engineering, University of Washington,
Box 352350, Seattle, Washington 98195, {noth,borning}@cs.washington.edu

Paul Waddell

Evans School of Public Affairs, University of Washington,
Box 353055, Seattle, Washington 98195, pwaddell@u.washington.edu

∗ Corresponding author

Preprint submitted to Elsevier Science 5 September 2001



Abstract

UrbanSim simulates the development of urban areas, including land use, trans-
portation, and environmental impacts, over periods of twenty or more years. Its
purpose is to aid urban planners, residents, and elected officials in evaluating the
long-term results of alternate plans, particularly as they relate to such issues as
housing, business and economic development, sprawl, open space, traffic conges-
tion, and resource consumption. From a software perspective, it is a large, complex,
system, with heavy demands for excellent space efficiency and support for software
evolution. It consists of a collection of models that represent different urban actors
and processes, an object store that holds the state of the simulated urban environ-
ment, a model coordinator that schedules models to run and notifies them when
data of interest has changed, and a translation and aggregation layer that performs
a range of data conversions to mediate between the object store and the models.
The paper concludes with a discussion of the lessons learned regarding software
architecture to support rapid evolution within the field of urban simulation.

2



1 Introduction

Patterns of land use and available transportation systems play a critical role in determining
the economic vitality, livability, and sustainability of urban areas. Transportation interacts
strongly with land use. For example, automobile-oriented development may induce demand
for more roads and parking (which in turn induces more automobile-oriented development),
while compact urban environments may induce more walking and demand for transit. Both
land use and transportation have significant environmental effects, in particular on emissions,
resource consumption, and conversion of rural to suburban or urban land.

Good technical support can play an important role in fostering informed civic deliberation
and debate on these issues. To aid urban planners, residents, and elected officials in evaluating
alternate scenarios—packages of policies and investments—we want to simulate the effects
of these scenarios on patterns of urban growth and redevelopment, of transportation usage,
and resource consumption, over periods of twenty or more years.

Early attempts at comprehensive urban simulations in the 1960s and early 1970s were largely
unsuccessful (Lee, 1973, 1994). Much has changed since then, both on the supply side (in-
cluding dramatically improved hardware, theoretical and methodological advances such as
discrete choice choice modeling (McFadden, 1973, 2000), and the emergence of a commercial
GIS market), and on the demand side (including public concern over sprawl, legal chal-
lenges to transportation plans made without considering their land use implications (Garret
and Wachs, 1996), and regulatory requirements such as the Clean Air Act Amendments of
1990). As a result, there has been somewhat of a renaissance in interest in urban simulation
modeling over the past decade.

However, in terms of planning agency practice, land use planning is still often poorly inte-
grated with transportation planning, despite their strong interactions. While transportation
models have been in routine use by metropolitan planning organizations for decades, the state
of common practice in land use modeling, and in integrated land use and transportation mod-
eling, is much less advanced than that for transportation modeling alone. For example, the
Travel Model Improvement Project sponsored by the U.S. Department of Transportation and
the Environmental Protection Agency has focused a substantial investment on TRANSIMS,
a new traffic microsimulation model (Nagel et al., 1999), but almost no federal investment
has occurred on land use modeling to integrate with these new travel models.

The UrbanSim system has been designed and implemented in response to these needs. It is
a system for simulating the development of urban areas, including land use, transportation,
and environmental impacts, over periods of twenty or more years (Waddell, 2000; Waddell
et al., 2000, 2001). From a software perspective, it is a large, complex application, with
heavy demands for excellent space efficiency and support for software evolution. The system
is fully operational and freely available via our web site at www.urbansim.org. It consists
of around 130,000 lines of Java code for the core UrbanSim system; including the visual-
ization, data preparation, and calibration tools, the total is approximately 200,000 lines,
plus another 100,000 lines of automatically generated code. It has been applied to Eugene-
Springfield, Oregon; Salt Lake City, Utah; and Honolulu, Hawaii, working with the planning

3



organizations in those metropolitan regions. Application to other regions is underway. We
have also done a historical validation of the system, starting UrbanSim with 1980 data for
Eugene-Springfield, running it through 1994, and comparing the results with what actually
transpired (Waddell, 2000). Correlations between results of the 15 year simulation and ob-
served data were generally above 0.8 at the level of the grid cell, and were higher for spatial
aggregations such as traffic analysis zones.

2 Related Work

There is a huge body of work on urban transportation modeling, land use modeling, and in-
tegrated land use/transportation modeling. Reviews and assessments of existing systems are
given in references Dowling et al. (2000); Environmental Protection Agency (2000); Miller
et al. (1999); Parsons Brinckerhoff Quade and Douglas (1998); Southworth (1995), among
others. Considerable progress has recently been made in land use modeling in both exper-
imental and deployed systems. However, except for UrbanSim, all the operational models
in use by planning agencies rely on a cross-sectional, aggregate, equilibrium approach. Such
models include DRAM/EMPAL (Putman, 1983), TRANUS (de la Barra, 1995), MEPLAN
(Echenique et al., 1990), METROSIM (Anas, 1994), and 5-LUT (Martinez, 1992). The cross-
sectional, equilibrium framework implies that there are no relevant temporal dynamics to
the processes of urban change; rather, one can model urban development as a static process
that represents an economic or a transportation optimization problem. In other words, these
models could be run for the year 2050 without needing to model the dynamics of evolution
between the current time and the year 2050. Clearly, this is a severe simplification, and
makes problematic the potential integration of these models with models of dynamic envi-
ronmental processes, or even of the dynamic evolution of human behavior with respect to the
built environment. The approach taken in UrbanSim more closely compares to the dynamic
disequilibrium HUDS model (Kain and Apgar, 1985) and the DORTMUND microsimulation
model (Wegener, 1983; Wegener and Spiekermann, 1996), but differs from these in having
substantially greater spatial detail and incorporating the nonresidential dimensions of urban
development.

Another substantial body of related work concerns Integrated Assessment Models (IAMs),
which model the interactions between human and ecological systems in an integrated way. A
major motivation for models of this kind is the assessment of global environmental change
(Alberti, 1999; Dowlatabadi, 1995; Parson and Fisher-Vanden, 1995; Rotmans et al., 1995;
Weyant et al., 1996). While the first generation of operational IAMs has emerged in the
mid-eighties, their roots can be traced back to earlier modeling work in the late sixties
and early seventies (Forrester, 1971; Isard, 1969; Meadows et al., 1982; Odum, 1983). Not
surprisingly, all of these global-scale models are quite aggregate, predicting environmental
disturbances from broad measures of economic growth and urbanization. The UrbanSim
approach, by contrast, uses substantial spatial detail, and a clearer behavioral approach
grounded in discrete-choice theory.

In addition to global models, spatially-explicit regional integrated models are now emerging,

4



such as the Patuxent Landscape Model (Voinov et al., 1999). The Patuxent Landscape Model
contains an economic land use conversion model that uses a statistical process to determine
probabilities that grid cells will be allocated to forest, agricultural, or urban usage. The
resulting conversion probabilities are used to predict land use patterns which determine the
land cover values used as an input to the PLM’s hydrology component. Communication
between the land conversion and hydrology models is implicit through changed data values
in grid cells. Several of the factors used in its land use conversion component are similar
to ones used in UrbanSim (e.g., access to infrastructure, historical tax assessor data), but
UrbanSim explicitly models agents and their actions rather than using statistical or finite-
element processes.

Finally, another area of related work concerns agent-based modeling, artificial life, and cellu-
lar automata. In agent-based modeling in its pure form, individual agents and their actions
are simulated, with each agent having local knowledge; global behavior then emerges from
these agent-level interactions. Agent-based modeling has been used for a wide range of appli-
cations, including economic, sociological, biological, and physical simulations. Two that are
closely related to UrbanSim are Sugarscape (Epstein and Axtell, 1996; Brookings Institu-
tion, 2000), a simulation of a small, artificial society, and Aspen, a microanalytic simulation
of the entire U.S. economy (Pryor et al., 1996; Sandia National Laboratories, 2000). These
approaches attempt to produce plausible macro-level behavior as emergent properties of
micro-level behavior. This approach has not yet evolved to the point of operational use in
applied planning settings, but represents a significant area of ongoing research.

Cellular automata have been used for simulating urban development (Batty, 1998, 1999;
Clarke et al., 1997), as well as for other applications such as simulating change in land cover,
freeway traffic, or the spread of wildfires. In its classic form, a cellular automaton consists of
a regular array of cells, each of which has a finite number of states. Each state change must
be local, depending only on the states of neighboring cells. Urban processes, such as sprawl
or urban decay, can emerge from simple local rules. However, these restrictions do not always
mesh well with our goal of supporting deliberation about public policy. For example, rather
than viewing the conversion of rural areas to urban ones as an analog of a biological process
in which the suburb grows and occupies increasingly wider areas, in UrbanSim we view
this process as the result of interactions among the Land Developer Model (which simulates
developers actively seeking out development opportunities throughout the region in response
to market conditions, zoning regulations, taxes and incentives, and the like), the location
choice models (which simulate residents or businesses seeking housing and commercial space),
and the Land Price Model. More recently, researchers have experimented with extensions of
the cellular automata formalism that incorporate extensions such as more agent-like behavior
or non-local search (Batty and Jiang, 1999; O’Sullivan and Torrens, 2000).

The UrbanSim approach assimilates aspects of these recent developments in highly dis-
aggregate agent-based and cellular automata models, while retaining the flexibility to use
macro-scale model components when appropriate. This assimilative approach requires that
the software architecture support multiple modeling approaches, and not be optimized or
restricted to only one. Models may be designed to operate at different temporal and spatial
scales, requiring unusual flexibility from the software architecture.

5



One implication of this for the software architecture is the need for a flexible mechanism for
assimilating model components and coordinating their behaviors. To meet this need, we use
implicit invocation, a software engineering technique in which different system components
communicate indirectly, rather than directly using procedure calls. In our realization of
implicit invocation, models communicate by registering interest in objects and fields held in
the Object Store, and by being notified when such an object or field has been changed by
another model; but not by invoking each other explicitly. This allows models to be developed
more independently of each other. (See Section 4.1 for details.) Additional advantages and
other applications of implicit invocation are described in references Garland and Shaw (1993);
Sullivan and Notkin (1992); Sullivan et al. (1996). Implicit invocation is essentially an event
mechanism; related concepts include active variables in LOOPS (Stefik et al., 1986), active
databases such as AP5 (Cohen, 1989), and the Smalltalk-80 Model-View-Controller (Krasner
and Pope, 1988) and Field integration mechanisms (Reiss, 1994). A discipline of defining and
using event-based programming mechanisms is evolving (Barrett et al., 1996; Carzaniga et al.,
1998; Garlan and Notkin, 1991).

The UrbanSim simulation approach, in summary, differs along several lines from prior urban
simulation models. It is far more disaggregate than any operational model implemented to
date. It uses a dynamic, path-dependent approach that does not impose simplifying assump-
tions of general equilibrium. It is designed for operational use to examine the effects of land
use, transportation, and the environmental plans and policies. And it adopts an assimila-
tive approach that draws from multiple streams of ongoing research in urban simulation,
including multi-agent, cellular automata, and macro-scale models. The software architec-
ture described in this paper provides a modular and extensible simulation environment that
facilitates developing and integrating urban models with varying temporal and spatial scales.

3 Overview of the UrbanSim Architecture

To simulate an urban region, UrbanSim employs a collection of interacting models, represent-
ing different actors and processes in the urban environment, such as residents, businesses,
land developers, and transportation networks. Each model encodes the behavior of agents in
the simulation, as well as the objects they operate upon, such as land parcels and buildings.
Objects correlate directly with easily-identifiable objects in the real world, making it easier
to reason about their properties and behaviors. Agents can be shared across models, as can
the objects they operate upon. Much more than other urban modeling systems, the Urban-
Sim model is very disaggregate and has high data requirements. These requirements enable
modeling of processes to be done at a fine level, which allows use of detailed spatial data
in a manner not possible with more aggregate systems. At the same time, this makes the
design and implementation of the system more difficult from a software perspective. Figure
1 illustrates the software architecture of the UrbanSim system.

In addition to the models, the other principal components of UrbanSim are a model coordi-
nator that schedules models to run and notifies them when data of interest have changed,
an object store that holds the shared representations of agents and other entities in the

6



Location GridBuildings

Households

Businesses

Economic
Model

Demographic
Model

Transportation
Model

Water Quality
Model

Economic
Augmentations

Economic
Augmentations

Environmental
Augmentations

Spatial
Queries

Actor
Queries

Updates

Query
Results

...

M
odels

Aggregation/
Translation

Layer

Model
Coordinator

Object
Store

Fig. 1. UrbanSim architecture

simulated world, and a translation and aggregation layer that performs a range of data
conversions to mediate between the Object Store and the models. The models do not com-
municate directly with each other; rather, they communicate via shared data held in the
Object Store, mediated by the translation and aggregation layer. This extensible, modular
architecture supports system evolution, in particular replacing a model with a revised one,
and creating and integrating new models. It allows models to define and share common sets
of objects that they all operate upon, via the Object Store (regardless of the original source
of the data), and also allows them to monitor changes to data fields, providing a convenient
method for models to synchronize their actions.

A primary goal of this architecture is to move as much of the software complexity out of
the individual models and into the supporting infrastructure as possible. This supporting
infrastructure need be written just once, and can have the attention of an expert programmer.
The models, on the other hand, are both numerous and frequently changing due to rapidly
evolving theory, methods and modeling needs. Often, specifying them is difficult, requiring
considerable domain-specific expertise, specialized data, and testing; the more one can relieve
the model designers of programming burdens the better, so that they can concentrate on
issues arising from the domain.

3.1 Models

The initial software implementation of UrbanSim (Waddell, 1998) was a collection of tightly-
integrated component models, including a developer, economic and demographic transition
components, a land use component, and an external transportation model. The functionality
of each model was intermingled with the functionality of the others, creating a large, complex
system that did not lend itself to specialization, refinement, or enhancement. In creating a
new framework for the UrbanSim model we sought to meet the following requirements:

7



• agent-level microsimulation of choice behavior
• a grid-based structure to represent spatial information, to facilitate detailed spatial queries

and simulation
• easy replacement of one model by a new version, to support system evolution
• easy integration of new models
• support for different temporal and spatial scales
• support for visualization of the model output and its processes, for explanations and

debugging

The new architecture has met these requirements. It has also proven relatively robust and
stable, and has supported extensive model evolution, the introduction of several additional
model components and integration with an external, concurrently-running visualization en-
vironment (Pinnel et al., 2000).

Models represent different actors or processes in the urban environment. In addition to en-
capsulating the behavior of the actor or process, each model is also responsible for defining
the set of object types it operates on, and the fields of those objects with which it is con-
cerned. A model can specify that it wishes to share fields also declared by other models,
thus providing one technique for data-level coupling and integration of models via the Ob-
ject Store. A model can also declare new object types that encapsulate domain-specific data
not previously declared (e.g., a water quality model might declare a nutrient load value).
A model may specify a set of object types and fields it wishes to monitor for updates, cre-
ations, or deletions. Each model is also responsible for indicating how frequently it wishes to
be executed; there are no external constraints on how frequently or regularly a model need
run.

The design of the models is informed by research in urban economics, sociology, civil engi-
neering, and other disciplines. A discussion of the theoretical basis for the various models is
given in references (Waddell et al., 2000; Waddell, 2000). A detailed specification of the mod-
els is given in reference (Waddell et al., 2001). The present paper and (Waddell et al., 2001)
are complementary: the present paper concentrates on the supporting software architecture,
while the latter concentrates on the model specifications.

3.1.1 Currently Implemented Models

A list of the models in the current version of UrbanSim is given below, and shown graphically
in Figure 2. Each model runs once per simulation year, unless otherwise noted. All of these
models consist of a collection of domain-specific case-based rules or decision rules that are
encoded in Java code. The models operate on a database consisting of individual households,
jobs, and grid cells of 150 by 150 meters containing real estate and land. Most of the models
simulate the choices of households, businesses and developers using discrete choice models
(multinomial logit) and Monte Carlo simulation.

Demographic Transition Model The Demographic Transition Model is responsible for
modeling births and deaths in the simulated population of households.

Household Mobility Model The Household Mobility Model simulates the choices of
households deciding whether to move from their current residential location.

8



Accessibility
Model

Economic and
Demographic

Transition
Model

Location
Choice
Model

Land Price
Model

Control Totals

Scenario
Assumptions

Travel Model
Outputs

Real Estate
Development

Model

Mobility Model

User Specified
Events

Export Model

ASCII
Output Files

GIS
Visualization

Macroeconomic
Model

Travel
Demand

Model System

External
Models

Data Store

User
Inputs

t.1 t.2

t.3 t.4

t.5 t.6

t.7

In
cr

em
en

t Y
ea

r 
an

d 
Ite

ra
te

Model
Coordinator

t.1...t.7 represent sequence of
operation during simulation of
one year

Fig. 2. UrbanSim model components (source: (Waddell et al., 2001))

Household Location Choice Model The Household Location Choice Model is responsi-
ble for determining a location for each household that has no current location.

Economic Transition Model The Economic Transition Model is responsible for modeling
job creation and loss.

Employment Mobility Model The Employment Mobility Model determines which jobs
will move from their current locations during a particular year.

Employment Location Choice Model The Employment Location Choice Model is re-
sponsible for determining a location for each job that has no location.

9



Accessibility Model The Accessibility Model encapsulates the interface to a (possibly
external) travel model. It is responsible for maintaining accessibility values for objects
within each traffic analysis zone.

Land Developer Model The Land Developer Model simulates the action of a developer
making decisions about where and what kind of construction to undertake (if any), in-
cluding both new development and redevelopment of existing structures.

Land Price Model The Land Price Model simulates the evolution of land prices at each
grid cell as the characteristics of locations change over time.

3.1.2 Temporal Scale Issues and Simplifications

UrbanSim provides a much more disaggregate and detailed simulation than other urban
land use models. Even so, to keep the computation manageable, the model makes many
simplifying assumptions. For example, the Demographic Transition Model, like most of the
models, runs once per simulated year. Each simulated year, it adjusts the total population
values and distributions, but in reality people are born and die, and move into and out of
the region, every day. Similarly, the Land Price Model simulates the operation of the real
estate market at a temporally aggregate level, adjusting prices once per year rather than
continuously. The software architecture has been designed to accommodate events based on
any time scale specified by a model, to allow the integration of models with different time
steps. (See (Waddell et al., 2000; Waddell, 2000) for additional discussion of the theoretical
basis for these design decisions and their consequences.)

3.1.3 Defining a Model

The description of a model consists of a Model Definition File, and separately, a Java class
definition for the model. The Model Definition File includes the model’s name, and the
set of objects and object fields it reads and writes, along with flags indicating if the fields
are to be shared with other models (i.e., sharing a field with an already-created model).
Shared variables are specified explicitly in the model definition rather than implicitly through
duplicated names in order to ensure that any duplicate use of an object field is deliberate.
This avoids a potential problem where commonly-used names may be used in independent
models but with different semantics, and sharing the variables in that case would cause
erroneous results. For example, one model might refer to “population” as a count of persons,
and another as a count of households, in which case trying to share the field would produce
inconsistencies. Information from all the relevant model definitions is combined to produce
the definitions of the objects in the Object Store (Section 3.3.2).

The remainder of the model’s functionality is specified by a Java class, which must be a
subclass of the abstract class Model. The following are the key methods defined by Model,
and which are overridden in concrete subclasses.

init Perform any model-specific initialization, including notifying the Model Coordinator
which objects and fields it wishes to monitor for changes.

run Perform the work of running the model at the current simulated time.
nextScheduledRunTime Return a float indicating the next simulated time that the model

10



wishes to be run.
onCreate Perform any needed bookkeeping if an object of interest has been created. This

method is invoked if one of the objects in which this model has registered interest has
been added to the Object Store.

onChange An object type or field that this model monitors has been changed—react ac-
cordingly.

onRemove Perform any needed bookkeeping if an object of interest has been removed from
the Object Store.

If the degree of interaction between a new model and existing models can be expressed at
the data level and there is a well-defined order between them (e.g., one model’s outputs are
always used as inputs by another model), then no additional information is required. For
example, the output of the Demographic Transition Model (i.e., newly-created households
that reside in limbo) is an input to the Household Location Choice Model, and this inter-
action is wholly defined at the data level (i.e., the existence of new households in limbo). If
models need to be more tightly coupled, or operate on differing temporal scales, the data
notification interface can be used. For example, a continuous-time model can be set to mon-
itor changes to data fields it uses as inputs, and compute an updated set of outputs only
when its inputs have changed. The Translation/Aggregation Layer can help with models
that operate on different spatial scales, for example by aggregating from the parcel or grid-
cell level to the zonal level. The key methods used in providing this functionality are the
onCreate, onChange, and onRemove methods of Model (as defined above), and the postQuery
and postUpdate methods of the Model Coordinator (Section 3.4), which pass information
through the Translation/Aggregation Layer and on to the Object Store.

In addition to providing a mechanism for coupling several models using implicit invoca-
tion, another application of the model notification mechanism is to support the caching of
frequently-accessed data within a model, rather than repeatedly accessing it from the Object
Store. This can be helpful if a model needs to perform costly processing on a large amount
of data, as it can compute the results once and recompute only what is needed as parts of
the underlying data are changed. Data modification messages serve as notification that the
model’s cache is no longer valid, and supply the specific data element(s) which have changed.
For example, the Land Price Model maintains regional and zonal-level vacancy rates. These
more aggregate vacancy rates change slowly over time, so the Land Price Model computes
them once, and modifies them as needed as households and employees move about the region,
rather than recomputing the aggregate vacancy rates every time the model runs. As the vast
majority of employees and households remain where they are at each simulation step, this
approach substantially reduces the overall number and size of queries to the Object Store.

3.2 Model Coordinator

The Model Coordinator is responsible for managing the collection of models present in a
simulation. It is responsible for determining the execution order of models, resolving any
data dependencies one model may have on another, and notifying a model when another
model has changed data it is monitoring.

11



Some key methods defined by the Model Coordinator class are:

runSimulation Run the simulation once the event queue has been populated.
executeEvent Execute a single event (provided as an argument to this method).
getOrdering Determine a total ordering among a collection of events (provided as an argu-

ment to this method).

3.2.1 The Event Queue

The Model Coordinator maintains an event queue containing timestamped events. These
events include requests by a model to execute at a future time, development events scheduled
to occur at a future time, database updates that were created by exogenous events that did
not occur instantaneously, and policy events that indicate planned changes in regional or
local policy. Running the simulation consists of gathering the set of events that are to occur
at the current timestep, determining a total order for those events that preserves any data
or ordering dependencies they may have, and then executing them in that order.

The event queue is thus the traditional data structure used in discrete event simulations,
except for the additional consideration of breaking ties among events scheduled to occur at
the same time. Any number of models or simulation events may be scheduled to execute at
the same instantaneous timestep. However, the Model Coordinator may not then execute
these events in an arbitrary order—there may be dependencies among them. For example, if
the Household Mobility Model and the Household Location Choice Model are both scheduled
to execute at time t, the Household Mobility Model must be run first, determining a set of
households that decide to move, and then the Household Location Choice Model must be run
to find available housing units for them. In other words, the choice to move from a current
dwelling and the choice to look for a new dwelling are not independent; this dependency is
reflected by the constraints on the order in which the models are run.

Since models are not restricted to running at regular intervals, in general it is not possible to
determine execution orders until run-time. This introduces an enormous amount of complex-
ity not found in most other urban modeling systems, which typically have a fixed ordering
of execution. When more than one event is to occur at a given timestep, it is necessary to
determine a total order of the events that preserves any order dependencies that may ex-
ist between them. Dependencies are of two types, data-level dependencies, and model-level
dependencies between model execution events.

A data dependency exists between two models when one model writes to a field that another
model reads from. In such cases, it is essential that the reading model reads the correct
version of the data, and the writing model overwrites data only when it is safe to do so from
another model’s perspective. In the absence of other ordering dependencies, we assume that
all reads to a field occur before any writes to it, and that writes can occur in any order.
This reflects the typical access pattern of models, which generally read from many objects
and write to a small number of fields of a small number of objects. (The fields written to
generally have a very small overlap with reads from other models.)

A model-level dependency is an ordering dependency explicitly introduced by a model’s

12



author, in the form of a set of partial orderings between two or more models. This pro-
vides a mechanism to order models based on their semantics rather than their syntax (data
reads/writes). For example, the Land Developer Model and the Land Price Model could be
executed in either order, based on their inputs and outputs, but we schedule the latter to
execute after the former so that adjustments in land price due to this year’s demographic and
economic changes do not affect development. This is based on the simplification of market
dynamics that we adopt: that development decisions are made once per year, looking at the
state of the region in the prior year to decide what should be built in the current year.

To determine a valid total order for a collection of events, a directed acyclic graph is con-
structed. Events are represented as nodes in the graph, and directed edges are created be-
tween events that access the same data fields of objects or that have model-level depen-
dencies, with the direction of the edge indicating that the source node (event) must occur
before the destination. When determining the possible dependencies between two model ex-
ecution events, we must compute the transitive closure of all models and all fields that may
potentially be read from or written to on the basis of the notification mechanisms. To en-
sure correctness, the full chain of potential reads and writes must be considered. Model-level
dependencies override data-level dependencies in the case of conflicts. A topological sort is
used to generate a valid total ordering of the events to be executed.

3.2.2 Development, Employment, and Policy Events

UrbanSim supports events that create, modify, or delete buildings; create, move, or delete
businesses or households; or change the urban growth boundary or re-zone land. Many of
these events are generated by models. (For example, the developer model generates building
development events.) However, events can also be read from an external file, allowing the
modeler to introduce development projects and policy changes into the event pipeline that
are exogenous to the models. For example, a scenario author may wish to simulate the effects
of a major business leaving the region, a shopping center being constructed, or a modification
to the urban growth boundary that occurs at a particular time in the simulated future.

3.3 Object Store

The representations of agents in the world (such as households and businesses), and the
objects they operate upon (such as buildings and land parcels), are held in the Object Store.
The Object Store serves as an in-memory database that can be queried or updated, and that
supports filtering on entity attributes.

The basic interface to the Object Store is through its postQuery and postUpdate methods.
A model constructs a Query object by filling in the object type and set of fields to query for
(e.g., the age and size category fields for households), and adds any Filter objects to the Query
as desired (e.g., a filter that returns only households with a given number of workers). The
postQuery invocation returns a QueryResult object, which contains a copy of all relevant data
from the Object Store, including internal object IDs for all values returned. Updates work
in a symmetric fashion, with a model constructing a Update object whose form is similar to

13



QueryResult with the addition of the update type (create, modify, remove).

From a software engineering point of view, the Object Store also serves to encapsulate rep-
resentation decisions about the entities in the simulation. From outside the Object Store,
these act as traditional instances in an object-oriented language. However, they are repre-
sented more efficiently within the Object Store. Further, rather than defining these objects
by writing a class definition, we use information in the Model Definition Files to give a
description of just the portion of each object relevant to the corresponding model. These
partial descriptions are then integrated by the system during the code generation phase to
produce the eventual object definition.

3.3.1 Object Overhead Issues

Modeling Eugene-Springfield (a relatively small metropolitan region) requires some 350,000
objects to be represented in the Object Store. If these were represented as ordinary Java
objects in our current Java implementation (Sun Java 2.0), there would be an additional
overhead of approximately 20 bytes per object, for a total of seven megabytes. A larger
region such as Salt Lake City requires some 1.5 million objects. Given the typical access
patterns for the fields of objects (Section 3.3.3), performance is much improved if all the
objects can be held in main memory, and so reducing space overhead is important.

Therefore, we represent objects efficiently within the Object Store, using parallel arrays
holding the fields of each object type. For example, each Household object includes a integer
field to hold its location, and a byte field to hold its income category. Rather than storing
300,000 explicit Household objects in the Object Store (with the attendant object overhead),
we hold the information in a series of arrays, including an integer array Location with 300,000
elements, a 300,000 element byte array for income categories, and so forth.

Since these fields almost always hold primitive Java types such as floats or ints, rather
than reference types, storing the fields directly in large arrays eliminates most of the space
overhead. It also eliminates wasted space in each object due to word alignment padding, as
would arise for byte fields. The encapsulation provided by the Object Store means that this
non-standard representation is not visible outside it.

Other data structures have been implemented in a lightweight fashion, such as dynamic
arrays, hash sets, and hash tables, to allow for storage of primitive types (ints, floats, etc.)
in a fashion that eliminates the Java object-level overhead present from using Java’s built-in
data structures such as the ArrayList and HashMap.

3.3.2 Construction of Object Class Definitions

Objects in the Object Store consist of the union of all fields defined by models for each object
type and by the set of default object definitions (which are shared by most models). Queries
can return copies of any of the fields of objects, and updates can modify fields or create or
remove instances of objects. The Object Store’s functionality has been tailored to the needs
of UrbanSim-style models, including the ability to perform spatial queries on geo-referenced
data (a task poorly performed by traditional databases).

14



The complete definition of each object type, and the Java code used to access and query
it, is generated automatically from these partial object descriptions. For example, the Zone
object type represents a traffic analysis zone. Partial definitions of Zone are given by both
the default object definitions and the Developer Model These definitions are combined, and
used to generate the final version of the Zone object. Query/Update access methods, and
routines that enable objects to be saved or loaded from disk, are generated automatically as
well.

3.3.3 Swapping

The contents of the Object Store may be too large for the available main memory. To handle
this, we provide a simple swapping mechanism that allows an array holding the contents of
a field for an object type, e.g. the Location field from the Household type (Section 3.3.1),
to be written out to disk if need be. This mechanism reflects the typical access patterns
of models, which generally access every object of a given type, but only a small number of
fields of each such object. (The more typical unit of swapping is the object—but given this
access pattern, swapping on a per-object basis would be less desirable, since we would swap
in entire objects, even most of the fields would not be immediately needed.) However, it is
still preferable if possible to keep all data in main memory, since all of it is touched during
each simulated year. Thus far, we have not used a commercial database as a back end, due
to a desire to not tie the Open Source UrbanSim code to a proprietary system. However,
we plan to offer access to commercial databases as an option (but not a requirement) in a
future version.

3.4 Translation and Aggregation Layer

The Translation and Aggregation Layer (T/AL) is responsible for converting between differ-
ent levels of spatial and/or temporal aggregation from queries or updates and the objects in
the Object Store. For example, models can query for zonal population totals. The Transla-
tion/Aggregation Layer computes and maintains these totals independent of the information
in the Object Store, which consists of population information at the grid cell level.

At present, the T/AL is implemented using a set of methods in the Model Coordinator, rather
than as a separate component, and serves only to cache query results for data aggregated at
the zonal level. The two key methods that implement the T/AL, both in ModelCoordinator,
are postQuery and postUpdate, to post a query or an update to the Object Store respectively.
However, as the system evolves and we integrate models from increasingly diverse domains,
we expect the T/AL to become increasingly important as we need to share data at widely
different levels of spatial or temporal aggregation. At that time we may re-implement it as
a separate component in its own right.

15



3.5 Data Import and Export

On the input side, UrbanSim requires a substantial amount of data to simulate an urban
area, including census, employment, parcel, zoning, and transportation network data. We
have written a suite of custom data preparation tools that can convert data to the formats
we require, merge datasets, detect inconsistencies, and in some cases fill in missing data or
correct errors in base year input data using heuristics. This input data is generally made
available to UrbanSim in the form of delimited ASCII text files.

On the output side, UrbanSim’s output module is responsible for gathering, aggregating,
and exporting data from the Object Store to a set of external ASCII text files containing
requested extracts or summaries from the Object Store. Currently, the export model writes
output files containing households and jobs by type, housing units, non-residential square
footage, and land and improvement values, summarized by grid cell and by Traffic Analysis
Zone. These files are then passed on to other systems (including GIS software, statistical
software, spreadsheets, and the external travel model) for subsequent analysis and graphical
display. To simplify the software engineering aspects of data export, we have defined the
output module as a model, analogous to the Demographic Transition Model, the Household
Mobility Model, and so forth (Section 3.1). This allows the Export Model to be scheduled
to run at defined times, querying the Object Store to take a snapshot of the state of the
simulation. Conceptually, however, it is not a model like the Demographic Transition Model
or others, since it does not represent an agent in the simulated world, and only performs
reads of the Object Store, not writes.

Finally, in addition to input and output files, the system can write a snapshot of the current
state of the Object Store to an external file, allowing the system to be restarted quickly from
a given point in the simulation.

4 Experience and Lessons Learned

Perhaps the most important software lesson learned from this work has been the value of
moving as much of the complex functionality out of the individual models and into the
supporting infrastructure as possible; most of the specific lessons discussed below are ways
of achieving this goal.

4.1 Implicit Invocation

Models do not communicate directly with each other, but rather communicate by registering
interest in objects and fields held in the Object Store, and by being notified when such an
object or field has been changed by another model. The architecture thus uses a form of
implicit invocation (Garland and Shaw, 1993; Sullivan and Notkin, 1992; Sullivan et al.,
1996), in which components interact by generating and responding to events, rather than by
explicitly invoking each other’s methods. As in other systems, implicit invocation has proven

16



to be a powerful technique for addressing component interaction complexity in UrbanSim.
Two advantages of using implicit invocation have been:

• the ability to decouple models, since each model registers interest in objects and fields,
makes changes to the Object Store, and responds to changes independently of the other
models. This has made it significantly easier to experiment with new models and to evolve
existing ones.

• ensuring a consistent interface for model interactions, since all interactions occur via the
Object Store.

While our implicit invocation mechanism has worked well for the current style of models, we
expect that it would break down if we moved to a much finer-grained simulation, for example,
one in which households could move, developers could begin constructing new buildings, and
so forth, at any time, rather than on a yearly basis. The anticipated problems arise from
the current mechanism being relatively coarse-grained: in the current architecture, a model
cannot specify that it wishes to monitor a field in a particular object, only that it wishes to
monitor a field in all objects of a given type. Any additional filtering or selection must occur
within the callback code that is executed within the model as a result of the notification.
This has been quite acceptable in the current system, but could introduce excessive numbers
of unnecessary notifications in a more fine-grained approach, leading to unacceptably slow
execution speeds.

A related difficulty is that the complexity of the callback code increases as more models
use it to monitor and update related fields. For example, adding a new model that affects
the existing functionality embedded in notification methods requires that the callback code
in the new model take into account all of the existing functionality and not override or
invalidate any of its actions.

4.2 Explicit versus Implicit Execution Ordering

We originally intended to handle most of the specification of model execution ordering using
implicit data-level dependencies (Section 3.2.1). However, experience showed that the simple
data-level ordering dependency rules (all reads to a field before any writes to it) failed to
capture many important semantic constraints on model execution ordering. Thus in practice,
the bulk of ordering dependencies are specified explicitly by model creators.

We also allow user-supplied model-level ordering dependencies to override data-level ones.
For example, the Export Model only reads from the Object Store and never writes to it. The
implicit data-level dependencies would require that it run before other models. However,
we use an explicit ordering constraint to require that it be run after all the other models,
so that it exports the information after the simulation has completed for the current simu-
lated instant of time. However, if there are ordering dependency conflicts at the same level
(i.e., at the model-level, or at the data-level in the absence of any overriding model-level
dependencies), an error will be signaled.

The current design has worked well in practice, but is not entirely satisfying, and may begin

17



to cause problems if the number of models increases dramatically. At that point we expect
we will need to re-examine the issue, and perhaps find more sophisticated ways to determine
implicit ordering constraints that reduce the need for explicit orderings.

4.3 Object Storage and Representation

Java’s overhead for object representation (specifically, the class tag and the overhead of word
alignment padding) has made the overhead of using standard Java objects in the Object Store
prohibitive. Instead, we use a nonstandard object representation, namely parallel arrays
holding the fields of each object type. However, this is not visible outside of the Object
Store’s encapsulation boundary. This solution is not new to UrbanSim: it is akin to the use
of marshalling in Smalltalk, CORBA, Java, etc. It is also more loosely related to the concept
of flyweight objects (Calder and Linton, 1990; Gamma et al., 1995), although unlike flyweight
objects, objects in the UrbanSim Object Store do not have extrinsic state that depends on
their context.

The approach has had enormous benefits in the context of UrbanSim. Memory requirements
have decreased by a factor of seven or more as compared with the original object-based
implementation, making the simulation of large areas such as Salt Lake City, Utah feasible
on modest desktop systems. It has also facilitated the addition of disk-based swapping to
the Object Store to handle cases in which the simulation’s storage requirements still exceed
the available memory.

4.4 Automatic Generation of Code from Declarative Specifications

We have made considerable use in UrbanSim of the technique of generating Java code au-
tomatically from declarative specifications. One example is the generation of object class
definitions for objects in the Object Store, along with query and update methods (Section
3.3.2). The automatic generation of Java code that defines objects and their interface with
the Object Store removes much programming burden from experimenters who introduce a
new model or replace an existing one, as they do not have to write code that defines or
manipulates object types. (This is particularly important since we use a non-standard rep-
resentation of objects within the Object Store.) It also ensures that a consistent interface
exists between the Object Store and every object that is contained within it.

We have also used automatic generation of Java code to define specialized, lightweight
data structures optimized to store primitive Java types (ints, floats, etc.) with a mini-
mum of memory overhead. These include lightweight dynamic arrays (SimpleDynamicArray),
lightweight hash tables and sets (HashTableIntInt, HashSetInt, HashSetFloat, etc.), and some
additional wrapper objects.

The issue addressed by these lightweight data structures is that in the standard Java library
there is just one class definition for e.g. HashSet, whose element type is Object. Therefore, to
store ints in a standard hash set, each int must be wrapped using the Integer class, leading

18



to a considerable overhead in both space and time. Our automatically-generated HashSetInt
class eliminates this overhead. If sufficiently powerful generic types were incorporated in
future versions of Java, the need for these specialized lightweight data structures would be
eliminated (or more precisely, they would be generated by the Java system itself rather than
by us). Note that to be useful for our purposes, such a design must provide heterogeneous,
not homogeneous, translation of generic types—homogeneous translation does not handle
the space overhead problem. (In heterogenous translation, the compiler produces different
versions of the code for each instantiated type; in homogeneous translation, just one version.
For Java, homogeneous translation requires wrapping each primitive type, which adds a
tremendous space penalty. Both varieties of translation are available in the Pizza extension
to Java (Odersky and Wadler, 1997); GJ (Bracha et al., 1998) and NextGen (Cartwright and
Steele Jr., 1998) provide only homogeneous translation.)

4.5 Choice of Programming Language

UrbanSim is implemented in the Java programming language. Java has provided a solid
environment for implementing a system of this kind, particular strengths being automatic
storage management, static typing, a rich class library, and portability. While its execution
speed is not comparable to C++, current compiler technology (e.g., Just-In-Time compi-
lation) has provided reasonable performance. Perhaps the biggest problem for us has been
the overhead of object representation, which has required unorthodox object representations
within the Object Store (Section 3.3).

Java provides many advantages over other programming languages that were considered.
These advantages include:

• Object-oriented language, where we can use inheritance and subclassing to increase
reusability of language-level objects and code we write;

• Automatic storage management, which helps improve software reliability by eliminating
memory allocation and storage errors that can be difficult to find and fix in other envi-
ronments;

• A rich collection of data structures and libraries, which improves productivity when writing
code;

• Portability, so that we can run the UrbanSim model on a variety of platforms without
needing to modify the source code;

• Performance, which is reasonably good due to the use of Just-In-Time (JIT) compilers,
and is substantially better than interpreted languages.

We considered using one of the dedicated modeling languages or environments which are
available, such as Stella, Swarm (Luna and Stefannson, 2000; Swarm Development Group,
2000), StarLogo (StarLogo Group, 2001), or the MIMOSE framework (Möhring, 1996). How-
ever, none of these met our requirements for portability, generality, and efficiency. We thus
chose to implement a framework from scratch, enabling us to customize and optimize it for
the specific domain and types of models we work with.

19



4.6 An Open Source Software Approach

The UrbanSim software is licensed under the GNU General Public License (GPL) from
the Free Software Foundation. This license is well-known among software developers, and
is used for such systems as the linux operating system and the emacs text editor. It is not
so commonly used for software for urban modeling, but has some significant benefits. The
license allows anyone who has the software to further distribute it, to change it, or to use
parts of it in new programs. Further, it requires that any distribution of the system or of
derivative works continue to be licensed under the GPL. The distribution must include the
source code as well as the compiled object code, or make the source code easily available.
(Please see the GPL itself (Free Software Foundation, 1991) for the precise terms of the
license.)

The benefits of licensing UrbanSim under the GNU General Public License are that other
researchers and practitioners can freely apply the software, as well as build on it and dis-
tribute those results as well. In contrast, a proprietary license would typically require the
payment of fees, and might well not include the source code. Using the GPL license also has
quite different implications from placing the source code in the public domain: if this were
done, the version in the public domain would be freely available, but someone else could
produce a derivative work (perhaps involving changes to a relatively small percentage of the
system), and then place this derivative work under a restrictive, proprietary license.

The original implementation work on the software architecture described in this paper was
done by a single programmer (the first author). Subsequently, however, portions of the in-
frastructure and many of the models have been modified or created by others. We use the
Concurrent Versions System (CVS) (Cederqvist, 2000) as a means of coordinating and inte-
grating programming work performed by the different programmers who work on this project.
CVS maintains a central repository with the definitive copy of the source code. A program-
mer checks out a copy of the system, which can be freely modified on that programmer’s
personal disk directory. When the new version is ready, the programmer can then check it
in to the repository. CVS keeps track of the different versions of the system, and watches for
conflicting check-ins by different programmers, notifying them so that the differences can be
resolved.

CVS is often used for Open Source development projects, since it is admirably suited to co-
ordinating the work of programmers at geographically distributed locations. Another feature
of CVS is that the developers can allow anyone read-only access to the repository, so that
others can track the latest versions of the software. We have not yet used these features,
but plan to in the near future as a way of coordinating work with a Metropolitan Planning
Organization that will be applying UrbanSim to that region.

20



5 Conclusion

UrbanSim is both a vehicle for research on modeling urban systems and a practical system
that has been used in planning work in several U.S. cities. The software uses a modular ar-
chitecture that allows models to be written as independently as possible, and that provides
for a clean separation between the models and the data on which they operate. This has
supported extensive experimentation with alternate modeling techniques, and also supported
implementing a system that is much more disaggregate and responsive to policy considera-
tions than others of its kind. The primary software lesson learned from this work has been
the value of moving as much of the complex functionality out of the individual models and
into the supporting infrastructure as possible; specific techniques for achieving this include
implicit invocation, efficient object representation in an encapsulated object store, and ex-
tensive use of automatic generation of code from declarative specifications.

Acknowledgments

Thanks to Nathan Freier for comments on this paper. Many people have contributed to
UrbanSim. We would particularly like to thank Michael Becke and Nathan Freier for work
on the software, as well as A.J. Brush, David Chang, Matthew Dockrey, Leo Lai, Dorian
Miller, and Denise Pinnel. Thanks to Gudmundur Ulfarsson, Kevin Krizek, John Carruthers
and Robert Willis for work on data analysis and model calibration. This research has been
funded in part by National Science Foundation Grant Nos. CMS-9818378 and IIS-9975990,
and in part by the University of Washington PRISM project.

21



References

Alberti, M., 1999. Modeling the urban ecosystem: A conceptual framework. Environment
and Planning B 26, 605–630.

Anas, A., 1994. METROSIM: A Unified Economic Model of Transportation and Land-Use.
Alex Anas & Associates, Williamsville, NY.

Barrett, D., Clarke, L., Tarr, P., Wise, A., Oct. 1996. A framework for event-based software
integration. ACM Transactions on Software Engineering and Methodology 5 (4), 378–421.

Batty, M., 1998. Urban evolution on the desktop: Simulation with the use of extended cellular
automata. Environment and Planning A 30, 1943–1967.

Batty, M., 1999. Modelling urban dynamics through GIS-based cellular automata. Computers
Environment and Urban Systems 23, 205–233.

Batty, M., Jiang, B., Apr. 1999. Multi-agent simulation: New approaches to exploring space-
time dynamics within GIS. Tech. Rep. 10, Centre for Advanced Spatial Analysis, University
College London.

Bracha, G., Odersky, M., Stoutamire, D., Wadler, P., 1998. Making the future safe for the
past: Adding genericity to the Java programming language. In: Proceedings of the ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applications. pp.
183–200.

Brookings Institution, 2000. Sugarscape home page. Web page: http://www.brook.edu/

sugarscape.
Calder, P., Linton, M., 1990. Glyphs: Flyweight objects for user interfaces. In: Proceedings

of the ACM Symposium on User Interface Software Technology. pp. 92–101.
Cartwright, R., Steele Jr., G. L., 1998. Compatible genericity with run-time types for the

Java programming language. In: Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications. pp. 183–200.

Carzaniga, A., Di Nitto, E., Rosenblum, D., Wolf, A., Nov. 1998. Issues in supporting event-
based architectural styles. In: Proceedings of the Third International Software Architecture
Workshop.

Cederqvist, P., 2000. Version Management with CVS. iUniverse.com.
Clarke, K. C., Hoppen, S., Gaydos, L., 1997. A self-modifying cellular automaton model

of historical urbanization in the San Francisco Bay Area. Environment and Planning B:
Planning & Design 24, 247–261.

Cohen, D., 1989. Compiling complex transition database triggers. In: Proceedings of ACM
SIGMOD. Portland OR, pp. 225–234.

de la Barra, T., 1995. Integrated Land Use and Transportation Modeling: Decision Chains
and Hierarchies. Cambridge University Press.

Dowlatabadi, H., 1995. Integrated assessment models of climate change: An incomplete
overview. Energy Policy 23 (4/5), 289–296.

Dowling, R., Ireson, R., Skabardonis, A., Gillen, D., Stopher, P., Horowitz, A., Bowman, J.,
Deakin, E., Dulla, R., Oct. 2000. Predicting short-term and long-term air quality effects
of traffic-flow improvement projects: Interim report and Phase II work plan. Tech. Rep.
25-21, National Cooperative Highway Research Program, Transportation Research Board,
National Research Council.

Echenique, M., Flowerdew, A., Hunt, J., Mayo, T., Skidmore, I., Simmonds, D., 1990. The

22



MEPLAN models of Bilbao, Leeds and Dortmund. Transport Reviews 10 (4), 309–322.
Environmental Protection Agency, 2000. Projecting land-use change: A summary of models

for assessing the effects of community growth and change on land-use patterns. Tech.
Rep. EPA-600-R-00-098, U.S. Environmental Protection Agency, Office of Research and
Development, Cincinnati, OH., 260 pp.

Epstein, J. M., Axtell, R. L., 1996. Growing Artificial Societies: Social Science from the
Bottom Up. Brookings Institution Press & MIT Press, Washington, D.C.

Forrester, J., 1971. World Dynamics. MIT Press, Cambridge, MA.
Free Software Foundation, 1991. GNU general public license, version 2. Web page: http:
//www.gnu.org/copyleft/gpl.html.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Garlan, D., Notkin, D., 1991. Formalizing design spaces: Implicit invocation mechanisms. In:
Proceedings of VDM Europe. pp. 31–44.

Garland, D., Shaw, M., 1993. An introduction to software architecture. In: Advances in
Software and Knowledge Engineering. Vol. 2. World Scientific Publishing Company.

Garret, M., Wachs, M. (Eds.), 1996. Transportation Planning on Trial: The Clean Air Act
and Travel Forecasting. Sage Publications, Thousand Oaks, CA.

Isard, W., 1969. Some notes on the linkages of ecological and economic systems. Papers of
the Regional Science Association 22, 85–96.

Kain, J. F., Apgar, W. C., 1985. Housing and Neighborhood Dynamics: A Simulation Study.
Harvard University Press, Cambridge, MA.

Krasner, G., Pope, S., August/September 1988. A cookbook for using the model-view-
controller user interface paradigm in Smalltalk-80. Journal of Object Oriented Program-
ming 1 (3).

Lee, D. B., 1973. Requiem for large-scale models. Journal of the American Institute of Plan-
ners 39, 163–178.

Lee, D. B., 1994. Retrospective on large-scale urban models. Journal of the American Plan-
ning Association 60 (1), 35–40.

Luna, F., Stefannson, B. (Eds.), 2000. Economic Simulations in Swarm: Agent-Based Mod-
elling and Object-Oriented Programming. Kluwer Academic Publishers.

Martinez, F., 1992. The bid-choice land use model: an integrated economic framework. En-
vironment and Planning A 24, 871–885.

McFadden, D., 1973. Conditional logit analysis of qualitative choice behavior. In: Zarembka,
P. (Ed.), Frontiers in Econometrics. Academic Press, New York, pp. 105–142.

McFadden, D., Jul. 2000. Disaggregate behavioral travel demand’s RUM side: A 30-year
retrospective. In: Proceedings of the 9th International Association for Travel Behavior
(IATBR) Conference. Gold Coast, Queensland, Australia.

Meadows, D., Richardson, J., Bruckmann, G., 1982. Groping in the Dark: The First Decade
of Global Modeling. John Wiley & Sons, New York.

Miller, E., Kriger, D., Hunt, J., 1999. Integrated urban models for simulation of transit
and land use policies. Final Report, Project H-12. TCRP Web Document 9, Transit Co-
operative Highway Research Project, National Academy of Sciences: Washington, DC.
http://books.nap.edu/books/tcr009/html.

Möhring, M., 1996. Social science multilevel simulation with MIMOSE. In: Troizsch, K. G.,

23



et al. (Eds.), Social Science Microsimulation. Springer, Berlin, pp. 282–306.
Nagel, K., Beckman, R., Barrett, C., 1999. TRANSIMS for urban planning. Tech. Rep.

LA-UR 98-4389, Los Alamos National Laboratory.
Odersky, M., Wadler, P., 1997. Pizza into Java: Translating theory into practice. In: Pro-

ceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 146–159.

Odum, H., 1983. Systems Ecology: An Introduction. John Wiley & Sons, New York.
O’Sullivan, D., Torrens, P., 2000. Cellular models of urban systems. In: Theoretical and

Practical Issues on Cellular Automata: Proceedings of the Fourth International Conference
on Cellular Automata for Research and Industry (ACRI 2000). Springer-Verlag.

Parson, E. A., Fisher-Vanden, K., 1995. Searching for integrated assessment: A prelimi-
nary investigation of methods and projects in the integrated assessment of global climatic
change. CIESEN-Harvard Commission on Global Environmental Change Information Pol-
icy.

Parsons Brinckerhoff Quade and Douglas, 1998. Land use impacts of transportation: A guide-
book. Transportation Research Board, National Research Council.

Pinnel, L. D., Dockrey, M., Brush, A. B., Borning, A., May 2000. Design of visualizations
for urban modelling. In: Proceedings of VISSYM ’00 — Joint Eurographics - IEEE TCVG
Symposium on Visualization. Amsterdam.

Pryor, R. J., Basu, N., Quint, T., Feb. 1996. Development of Aspen: A microanalytic simula-
tion model of the U.S. economy. Tech. Rep. SAND96-0434, Sandia National Laboratories.

Putman, S., 1983. Integrated Urban Models: Policy Analysis of Transportation and Land
Use. Pion, London.

Reiss, S., 1994. FIELD: A Friendly Integrated Environment for Learning and Development.
Kluwer.

Rotmans, J., Dowlatabadi, H., Filar, J., Parson, E., 1995. Integrated assessment of climate
change: Evaluation of methods and strategies. In: Battelle Institute (Ed.), Human Choices
and Climate Change: A State of the Art Report. Battelle Pacific Northwest Laboratory,
Washington D.C.

Sandia National Laboratories, 2000. Aspen: A smart, agent-based economics simulation
model. Web page: http://www-aspen.cs.sandia.gov.

Southworth, F., 1995. A technical review of urban land use-transportation models as tools
for evaluating vehicle reduction strategies. U.S. Department of Energy.

StarLogo Group, 2001. StarLogo on the web. Web page: http://el.www.media.mit.edu/
groups/el/Projects/starlogo/.

Stefik, M., Bobrow, D., Kahn, K., Jan. 1986. Integrating access-oriented programming into
a multiparadigm environment. Software .

Sullivan, K., Kalet, I., Notkin, D., Aug. 1996. Mediators in a radiation treatment planning
environment. IEEE Transactions on Software Engineering 22 (8).

Sullivan, K., Notkin, D., 1992. Reconciling environment integration and software evolution.
ACM Transactions on Software Engineering and Methodology 1 (3), 229–268.

Swarm Development Group, 2000. Web page: http://www.swarm.org.
Voinov, A., Costanza, R., Wainger, L., Boumans, R., Villa, F., Maxwell, T., Voinov, H.,

1999. Patuxent landscape model: Integrated ecological economic modeling of a watershed.
Environmental Modelling and Software Journal 14 (5), 473–491.

24



Waddell, P., May 1998. The Oregon prototype metropolitan land use model. In: 1998 ASCE
Conference on Transportation, Land Use and Air Quality: Making the Connection. Port-
land, Oregon.

Waddell, P., 2000a. A behavioral simulation model for metropolitan policy analysis and
planning: Residential location and housing market components of UrbanSim. Environment
and Planning B: Planning and Design 2000 27 (2), 247–263.

Waddell, P., Jul. 2000b. Historical validation in Eugene-Springfield. Presentation at Second
Oregon Symposium on Integrating Land Use and Transport Models, available from http:

//www.urbansim.org.
Waddell, P., Jun. 2000c. Towards a behavioral integration of land use and transportation

modeling. In: 9th International Association for Travel Behavior Research Conference.
Queensland, Australia, available from http://www.urbansim.org.

Waddell, P., Borning, A., Noth, M., Freier, N., Becke, M., Ulfarsson, G., Aug. 2000. UrbanSim
reference guide, version 0.9. Available from http://www.urbansim.org.

Waddell, P., Borning, A., Noth, M., Freier, N., Becke, M., Ulfarsson, G., 2001. Microsimula-
tion of urban development and location choices: Design and implementation of UrbanSim.
Networks and Spatial Economics In press.

Wegener, M., 1983. The dortmund housing market model: A monte carlo simulation of a
regional housing market. Tech. rep., Institut fur Raumplanung, University of Dortmund,
arbeitspapier 7.

Wegener, M., Spiekermann, K., 1996. The potential of microsimulation for urban models.
In: Clarke, G. (Ed.), Microsimulation for Urban and Regional Policy Analysis. European
Research in Regional Science 6. Pion, London, pp. 149–163.

Weyant, J., et al., 1996. Integrated assessment of climate change: A overview and comparison
of modeling approaches and results. In: Bruce, J., Lee, H., Haites, E. (Eds.), Climate
Change 1995: Economic and Social Dimensions of Climate Change. Cambridge University
Press, Ch. 10, pp. 367–396.

25


