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Abstract

We present a broad, phenomenological picture of the distribution of the length of
urban linear segments, l, derived from maps of 36 cities in 14 di¤erent countries.
By scaling the Zipf plot of l versus its rank, two curves are obtained which are
dependent on city location (geography) but not on city size. It is shown that a
third class of cities does not fall into the above universality classes. This collapse of
curves suggests that urban morphology is governed by similar statistical rules at a
geographical scale.
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1 Introduction

The morphology of urban settlements and its dynamics has captured the in-
terest of physicists [1–9] as it may shed light on Zipf’s law for cities [4,5,10,11],
challenge theoretical frameworks for cluster dynamics or improve predictions
of future urban growth [2,6,7].

The search for a ’uni…ed’ theory of urban morphology has focused on the
premise that cities can be conceptualized at several scales as fractals. At the
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regional scale, rank-order plots of city size follow a fractal distribution [1]
and population scales with city area as a power-law [12]. More recently, it
has been observed that the area distribution of satellite cities, towns and
villages around huge urban centers also obeys a power-law with exponent
¼ 2 [2,6]. At the scale of transportation networks, railway networks appear to
have a fractal structure [13]. At the scale of the neighbourhood, it has been
suggested that urban space resembles a Sierpinsky gasket [1,12]. These scales
are inter-related as summed up in [1] (author’s translation from French): ’The
polycentric growth, which is connected to the non-homogeneous distribution
of pre-urban cores and the birth of a hierarchy of sub-centres, in‡uences the
morphology of the transport network, which plays in itself an important role
for the axial growth and therefore for the future spatial development of the
urbanised area’.

Urban fractal growth is essentially a space …lling process, that is, the larger
the fractal dimension value, the more …lled a planar city becomes. The frac-
tal dimensions of US cities and international cities were obtained with values
ranging from 1.2778 (Omha, [14]) to 1.93 (Beijing, [1]), where fractal dimen-
sion of large cities tend to cluster around the latter value [1,12,15,14]. The
fractal dimensions representing urban growth of London between 1820¡ 1962
were determined with values ranging from 1.322 to 1.791 [12]. The fractal di-
mensions for the growth of Berlin in 1875, 1920 and 1945 were also reported
to be 1.43, 1.54 and 1.69, respectively [1]. The fractal dimension of urban ag-
gregates is a global measure of areal coverage. Nevertheless, it does not show
whether clusters are separated or connected [7]. Equally, the fractal dimen-
sion does not yet fully characterise the microstructure of urban space on the
giant cluster that grows around the city core (or ’central business district’),
as the available datasets do not have, in general, enough resolution (e.g., for
US Bureau of Census data [16] each pixel area in the map represents an area
of 178m £ 178m on the ground [14]) –nevertheless, the situation is quite dif-
ferent for studies of individually selected cities, where resolution can be quite
high [17]. In other words, detailed measures of both areal coverage and spatial
distribution are needed to complement the description of the morphology of
an urban area adequately.

Hillier and Hanson [18] suggest an underlying structure to urban space that
is determined by the complexity of buildings which bound the space [19]. Ur-
ban space available for pedestrian movement, excluding by de…nition physical
obstacles, is relatively linear. When human beings are walking along this free
space, such a free space is locally perceived as a ’vista’ which can be approx-
imately represented as a line. The global set of vistas, so-called axial map,
is de…ned as the least number of longest straight lines. An axial map can be
derived by drawing the longest possible straight line, then the next longest
line, so-called axial line, until the free space is crossed; and …nally “all axial
lines that can be linked to other axial lines without repetition are so linked”

2



[18,20].

Here we show that we can rescale axial line length and rank to obtain two
distinct rank-order curves that provide a semi-geographical classi…cation for
several cities independently of city size. We also show that there is a class
of cities that do not obey this classi…cation. The collapse of curves suggests
that spatial ‡uctuations in the length of urban linear structures, di¤ering in
size and location, are governed by similar statistical rules and supports the
hypothesis that the linear dimension of large scale structures in cities re‡ects
generic properties of city growth [21].

2 Structure of urban space

Let li = fli,jg, j = 1, ¢ ¢ ¢ , Ni, be the Ni axial lines associated with city i. Each
axial line, li,j (j = 1, ¢ ¢ ¢ , Ni) is de…ned by the coordinates of its extremities

li,j =
n³

x(i,j),1, y(i,j),1
´

,
³
x(i,j),1, y(i,j),2

´o

The axial map of city i, Ci, is thus a set of Ni points on a fourth dimensional
space, Ci =

n³
ρi,j, θi,j, li,j, ϕi,j

´o
, where (ρi, θi) are the polar coordinates of the

axial line geometric centre, si,j =
³x(i,j),1+x(i,j),2

2 , y(i,j),1+y(i,j),2
2

´
, and

³
§ li,j

2 , ϕi,j

´

the polar coordinates of the axial line’s extremities on the geometric centre

reference system, di,j= §
µ jx(i,j),1¡x(i,j),2j

2 , jy(i,j),1¡y(i,j),2j
2

¶
. Figure 1 shows the

axial map of Tokyo, where lines longer than 1000 m are traced in black.

Coordinates ρ and θ encode the geographic location of axial lines. The uncon-
ditional distribution of ϕ is multimodal for rather general families of urban
settlements. This occurs, for example, in the case where land is partitioned
in clusters of randomly oriented orthogonal grids. Nevertheless, the uncondi-
tional distribution of l is unimodal and skewed to the right (see Figure 2), and,
thus, a good candidate for inspection of intermittency in urban space. We …t
the data to a stretched exponential distribution [22, pp 153-154] in Figure 2
(a), but verify that the …t is unsuitable to describe the large events.

It has been noted that in any …nite critical system, power-law descriptions
must give way to another regime dominated by …nite size e¤ects and the
distributions in general cross over to an exponential decay, which leads to
a curvature in the log-log plots [23]. However, spatial auto-correlations are
evident from Figure 1 for the large events, questioning the validity of a rigorous
…t of the distribution tail to a univariate pdf. Nevertheless, as we shall see,
auto-correlations do not seem to a¤ect the overall shape of the distribution.

We analyse the unconditional probability distribution of (axial) line length of
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36 cities in 14 di¤erent countries (see Table 1). In our analysis we use the rank-
order technique [22]. In Figure 3(a) we shift the y axis to show the curves.
To interpret the apparently unsystematic data in Figure 3(a) e¤ectively, it
is instructive to scale the data [24]. Since the rank ranges between 1 and
max (ranki), we de…ne a scaled relative rank ranki/max(ranki). Similarly,
for the ordinate, it is useful to de…ne a scaled line length by li/ hlii. As shown
in Figure 3(b), there is relatively good collapse of the data sets onto two master
curves for 25 (the cities plot in red and blue) of the 36 cities under study. The
other 11 cities (plot in green in Figure 3) do not collapse clearly onto a single
curve (see inset of Figure 3(b)).

3 Discussion

Our results are unexpected in that two universality classes appear for a wide
range of cities.

Do we con…rm the hypothesis of Batty&Frankhauser that urban space is like
a Sierpinski gasket?

It has been proposed that the evolution of urban aggregates in time approaches
a Pareto distribution [25], which suggests that spatially developed urban ag-
gregations exhibit a ’quasistationary’ state. As the Pareto exponents of line
length of di¤erent urban settlements are similar, the Pareto exponent could
serve, in the scope of certain error limits, as a structural measure of developed
urban aggregates, which may complement the fractal dimension.

Empirical explorations of urban morphology may lead to unexpected geomet-
rical layouts where power-laws are present and which are challenging for the
physicist.

The possibility that line length has a scale-free structure indicates that strate-
gic targeting of planning of long streets creates the main …ngerprint of a city.

Our …ndings show that it is important to model urban aggregates in detail ,
and that it may be more useful to model urban morphology as random rather
than as the outcome of rational decisions for some purposes.

Navigating in our cities is a complex perceptual task that may be added by
a fractal morphology: if there is no characteristic scale, then the navigator is
familiar with his surroundings at every scale -one decision mechanism adds
him in navigating at several di¤erent scales.

Comment that line length appears to be self-similar accross morphologically
relevant ranges of scales (2-3 orders of magnitude). If so, their characteristics
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can be described with fractal geometry, that is, simple scaling laws
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Fig. 1. Axial map of Tokyo. The 42310 lines with length less than 100 m are omitted.
The 30927 lines with 102 < l < 103 (m) are in grey and the 525 lines with l > 103

(m) in black.
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Fig. 2. Data are shown for the city of Tokyo. (a) Rank-order plot of line length
(circle points) together with a …t of the data to a stretched exponential pdf (solid
line). (b) Unconditional probability density of line length.
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Table 1
Geographical location and number of lines of the cities analysed.

Country City Number of lines

Japan Tokyo 73753
U.S.A. Chicago 30571
Chile Santiago 26821
Thailand Bangkok 24223
Greece Athens 23329
Turkey Istanbul 21798
U.S.A. Seattle 20213
U.K. London 15969
U.S.A. Baltimore 11636
Netherlands Amsterdam 9619
U.K. Bristol 7028
U.S.A. Las Vegas 6909
Iran Shiraz 6258
Cyprus Nicosia 6023
Netherlands Eindhoven 5782
U.K. Milton Keynes 5581
Spain Barcelona 5575
U.K. Wolverhampton 5423
India Ahmenabad 4876
U.S.A. New Orleans 4846
Iran Kerman 4372
U.K. Nottingham 4365
U.K. Manchester 4308
U.S.A. Pensacola 4296
Iran Hamadan 3855
Iran Qazvin 3723
Netherlands The Hague 3350
U.K. Norwich 2119
U.S.A. Denver 2092
Iran Kermanshah 1870
U.K. York 1773
Iran Semnan 1770
Bangladesh Dhaka 1566
Hong Kong Hong Kong 916
U.K. Hereford 854
U.K. Winchester 616
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Fig. 3. (a) Rank-order plot of line length. Plots are shifted along the y axis for
clarity. (b) Scaled rank-order plot of line length. Curves clearly collapse for two sets
of cities, but not so clearly if a third set is introduced (inset).
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