
1 Introduction
Cellular automata (CA) models of urban and regional change have, in recent years,
become commonplace (White, 1998). Many have been presented in the pages of this
journal, including a number in a special issue (Batty et al, 1997). Briefly, a CA consists
of a lattice (often a grid), a set of allowed cell states, and a transition rule specifying
changes in cell state which occur at discrete time steps. Each cell's state is determined
at each time step according to its own current state and the state of neighbouring cells
in the lattice (or cell space). Cell neighbourhoods are uniformly defined across the cell
space, typically including a cell's immediate neighbours in the lattice. The (nongeo-
graphical) example par excellence is Conway's Game of Life (Poundstone, 1985), which
exhibits bewilderingly complex global behaviour based on only two allowed cell states
and confoundingly simple transition rules. Such unexpectedly rich global behaviour is
one of the attractions of the approach as a basis for building urban and regional models,
since global structure in a CA system is often seen to emerge out of purely local
interactions between cells (Couclelis, 1985; 1988). This is attractive because it matches
our intuitive sense that much human spatial activity is not centrally planned or
organised, but arises from the responses of various actorsöresidents, developers,
planners, politiciansöto local circumstances. It also holds out some promise of deeper
insight into the enduring mystery of the relationship between processes at the microlevel
and the macrolevel of geographical and economic activity.

Although the rigid c̀lassic' CA has been used in some urban and regional models
(especially in work by Batty and Longley, 1986; Batty and Xie, 1997), it is generally
regarded as rather restrictive, and various `relaxations' have been introduced. In the
urban context, some of these are considered by White (1998, pages 112 ^ 113). In various
applications cells may be nonuniform including, for example, different suitabilities for
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development (Clarke et al, 1997). In some cases cell nonuniformity extends as far as
using the CA to generate a dynamic development potential at each cell, which is then
used to assign sequentially new development determined outside the CA (White and
Engelen, 1997). This effectively introduces asynchronous cell update, a significant
departure from the formalism. Cells which have a fixed stateöa variant of the nonuni-
form cell approachöhave also been introduced, to cope with the problem of model
èdge-effects' (White and Engelen, 1993). Furthermore, neighbourhoods may extend
beyond immediately adjacent cells (Clarke et al, 1997; White et al, 1997), with dis-
tance-decay effects, and cell transition rules are usually probabilistic. All this variation
certainly enhances the realism of CA-based models, and the likelihood of their more
widespread adoption in operational settings. However, this is achieved to the detriment
of the more general and elusive insights which the simple CA formalism originally
promised.

One way out of the impasse is to develop and explore systematically particular,
well-defined variations of the CA formalism. This is a major motivation for introduc-
ing the graph-CA, which formalises one CA variation in which cell neighbourhoods
may be nonuniform across cell space. The potential of such a spatial `relaxation' of the
formalism has previously been raised in the context of proximal spatial models by
Couclelis (1997). She discusses the relationship between proximal space, cellular
automata as they have been used in urban and regional models, and a formalisation
of those modelsögeo-algebra (Couclelis, 1997; Takeyama, 1996; 1997; Takeyama and
Couclelis, 1997). Adopting the same conceptual framework as Couclelis, in this paper I
rework the proximal model of space as a particular kind of cellular automatonöa
graph-CA or irregular CA. The graph-CA is thus also an alternative formalism to geo-
algebra. It is likely that each formalism will be more useful than the other in some (but
not all) contexts. In any case, graph-CA, like geo-algebra, are a useful generalisation of
CA models, and many existing and possible cellular urban models may be regarded as
implementations. It is further argued that the graph-CA, as presented in this paper,
provides some useful conceptual tools with which to unpick the knotty problem of the
relationship between structure and process, form and function. This has been a recur-
rent theme of this journal, and perhaps this paper may suggest approaches to some of
the questions about relating structure and process posed in a recent editorial (Batty,
1999). The approach may also provide a basis for geocomputational theory and
investigationöa recent concern of this journal (Couclelis, 1998)öas has been
suggested elsewhere (O'Sullivan, 1999).

In section 2 the proximal model of space, and the geo-algebra formalism are
introduced and described, to pave the way in section 3 for the introduction of graph-
CA as an alternative formalisation of proximal space. The next three sections then
show how understanding graph-CA as graphs, as CA, and as simultaneously graphs
and CA, respectively, enables a range of new perspectives and approaches. In section 4
the potential for description and investigation of model structures understood as
graphs is discussed. A particular graph-CA structure is also describedöthe multi-
graph-CAöwhich further demonstrates the generality of the graph-CA approach for
building a variety of spatial models. In section 5 some ideas from dynamical studies of
strict CA which may be usefully applied to this wide range of models are reviewed. This
paves the way for a consideration in section 6 of the potential for investigating the
relations between structure and process in graph-CA models. This discussion is con-
textualised by reference to a framework wherein graph-CA are related to other discrete
models, and by reference to research in other fields which demonstrates both that it is
possible to relate structure to dynamics using models of this type, and that there is a
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niche for specifically geographical (perhaps geocomputational) research in this area.
Some brief conclusions are offered in section 7.

2 The proximal model of space and geo-algebra
The proximal model of space and geo-algebra has been presented in a number of
papers by Couclelis and Takeyama (Couclelis, 1997; Takeyama, 1997; Takeyama and
Couclelis, 1997), and also in Takeyama's (1996) doctoral thesis. These ideas are derived
in part from a consideration of the relevance of absolute and relative models of space
(Couclelis, 1997) and also as a generalisation of Tomlin's (1990) map algebra. The
interested reader should refer to these sources for full details of the concepts and their
development; the essentials are presented here to allow the introduction of the graph-
based cellular automaton (graph-CA) as a reworking of these ideas, which enables
new approaches to the dual problems of implementing dynamic spatial models and
developing our understanding of spatial systems.

In the proximal conception of space, the significant features of a location are not
just those local to the location itself, but those which result from its being part of a
global spatial structure. The place that a location occupies in spaceöits siteöis
distinct from its situation, which describes its location relative to other locations
(Couclelis, 1997). The concept of proximal space attempts to accommodate both site
and situation in its central notion of the neighbourhood. According to Takeyama (1996,
pages 16 ^ 17):

`̀ In proximal space, the [spatial] information is geo-referenced as in absolute
space, but to each location is attached a representation of the relative space of
which it is a part.While the key notion in absolute space is the geo-referenced item,
and in relative space, the spatial relation, the key notion in proximal space is the
neighbourhood.''
Furthermore, a neighbourhood is defined by relations of nearness between spatial

elements, and nearness in turn depends on both (spatial) adjacency and (functional)
influence. A location's neighbourhood consists of all those other locations which
may influence it, whether through proximity or functional relations. The close affinity
between this view and that embodied in the neighbourhood relationships of CA-based
models is clear.

The proximal model is capable of encompassing both absolute and relational
conceptions of space, which have long competed for dominance in geographical theory.
This is not the place to reprise such long-running arguments. It suffices to point out that
proximal space seems wholly commensurate with recent developments in geographical
theory (see Sack, 1997; and even, perhaps, Harvey, 1996). The proximal approach also
draws attention to two aspects of spatial phenomena. First, spatial phenomena are not
mere collections of spatially referenced objects, contingently related by their geocoor-
dinates, as in a strictly absolute view of space; the construction of a proximal spatial
model requires us to recognise this fact and explicitly construct a set of relations
amongst the entities under consideration. The relations we construct are, in turn,
dependent on our theories about the phenomena we are modelling. Second, some
relations are usually more important than others, depending on the problem domain,
and on the particular sorts of phenomena of interest; again, a proximal view requires us
explicitly to acknowledge this fact. The necessarily true observation of an extreme
relational view, that everything is related to everything else, so that every single location
isöin some senseöa mirror of all space, is thus avoided.

According to Takeyama and Couclelis (1997, page 77), `̀ Geo-Algebra aims to
provide a rigorous common formalism for map analysis and spatial modelling''.
The clear implication is that it also provides a formalisation of proximal space,
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a connection made explicit by Couclelis (1997). The formalism conceives of a map M
as a set of tuples or geo-units, each of which consists of a location li and a value mi

which attains at that location:

M � fhli , m�li �ig . (1)

The terminological confusion is unfortunate (and no coincidence), but the tuples in M
may be thought of as generated by a mapping m(l �: L! V from the set of locations
L � flig to a set of state values V � fm(li )g.

Any arbitrary structure may be defined on the set L, although the initial presenta-
tion of the formalism by Takeyama and Couclelis (1997) assumes a regular grid for
simplicity. A regular grid is equivalent to continuous two-dimensional space in the
limit where L � R � R , and R denotes the set of real numbers. Similarly, the set V
may be generalised to a multivariate case where

V �
Yz
i � 1

Vi , (2)

when the formalism also accommodates the multilayer map concept familiar from
GIS.

Within this framework, it is easy to define unary map operations which apply at
each location li , and are effectively global functions on M, defined such in terms of a
local function f 0 on the value of M at each location in L :

f�M � � fhli , f 0�m�li ��ig . (3)

Binary operations such as addition, subtraction, and multiplication can be defined
between maps on the same location set L. For example, if V is the set of real numbers
R , then the addition operation between two maps M and N can be defined such that

M�N � fhli , m�li � � n�li �ig , (4)

which is the pairwise addition of values in each map by location. This is the core idea
in Tomlin's (1990) map algebra, which geo-algebra extends. Maps where V is a simple
mathematical set are a special case, and it is more general not to restrict the tuples in
M in this way so that hli , m(li )i may be any location ^ value pair. In this case, elements
in L may be geometric entities representing geographical objects `on the ground', and V
may be any set of complex structures representing the current states at those locations.
Note that the mapping notation still applies, so that m(li ) denotes the state in V which
attains at location li in map M.

This generalisation enables us to include the effects of spatial relations between
locations in Löa step vital to geo-algebra's ability to represent the proximal model of
space and cellular automataöby admitting the introduction of the metarelational map.
A metarelational map, R, is a map where a relational map is associated with each
li 2 L. A relational map, denoted Ri , is the set of all those locations in L which
influence location li . Ri can be represented by a binary map on L, in which all
influencing locations have value 1, and all other locations have value 0. Thus, the
metarelational map is given by

R � fhli , Ri ig ,
Ri � fhli , ri �li �ijri �li � 2 f0, 1g, 8li 2 Lg . (5)

The metarelational map is thus the means by which `̀ a representation of the relative
space of which it is a part'' is associated with each location (recall the quote from
Takeyama, above).

690 D O'Sullivan



The metarelational map Rmay be used in the calculation of nonlocal map functions.
First, an intermediate valued metarelational map M
 R is calculated, in which each
location li is associated with the set of values which attain at its influencing locations:

M
 R � fhli , Xi ig ,
)

(6)
Xi � fhli , x�li �ijx�li � � m�li �ri �li �g .

Any nonlocal map function may then be defined as a function on M
 R.
Within this framework, the regular lattice of a CA is represented by a metarelational

mapRCA in which each location's relational map can be defined with reference to a single,
local neighbourhood operator (`orthogonally adjacent grid cells', for example). The CA
transition rule is then equivalent to a function on the valued metarelational map
M
 RCA which produces a newmapM at time (t� 1) from the original mapM at time t:

Mt�1 � f�Mt 
 RCA � . (7)

Taken together, the location set L, value set V, the metarelational map R, and the
above transition function f constitute a dynamic map which may represent any CA.
Details of the representation of CA in geo-algebra are provided by Takeyama (1997)
and Takeyama and Couclelis (1997).

The important additional freedom which geo-algebra provides in the construction
of a cellular model, is that neighbourhoods need not be defined similarly for all cells.
Any metarelational map R may be used to represent different structures of spatial and
functional relations between locations, and the modeller is not restricted to metarela-
tional maps in which location neighbourhoods are defined uniformly across all li 2 L.

3 Graph-cellular automaton models
We now consider an alternative mathematical formalisation of the same proximal
model of space. This approach attempts to retain the intuitive simplicity of the cellular
automaton formalism, without losing all of the greater generality offered by the geo-
algebra framework. The key to understanding the relationship between the two
approaches is to realise that the spatial structure underlying any proximal spatial model
is conveniently described and understood as a graph. Further, we may think of any
dynamic proximal model as a cellular automaton process running on a graph, or as
a graph-CA.

First, we introduce some notation for graphs (for an introduction to the mathe-
matical theory of graphs see Wilson, 1996). A graph G consists of two sets V(G ) and
E(G ). V(G ) is a set of vertices (or nodes) fv1 , v2 , .::, vng, where n is the size of the
graph. E(G ) is a set of edges (or links) between the vertices, where each edge e is an
unordered pair of vertices fvi , vjg, written v�

i vj , for brevity. The neighbourhood of a
vertex vi 2 V is the set of vertices N(vi ) which are joined to vi by edges in E:

N�vi � � fvj jvj vi 2 E�G )g . (8)

In a simple graph, edges are undirected so that vi vj � vj vi , and loopsöedges which
begin and end at the same vertexöare not admitted. However, in the current context it
is preferable to admit both directed edges or arcs and loops, so that vi vj 6� vj vi , and vi vi
may be a member of E(G ). In the context of such a directed graph, it is also useful to
distinguish between the in-neighbourhood Nin (vi ) of vertices connected by arcs towards
vi , and the out-neighbourhood Nout (vi ) of vertices connected by arcs from vi , that is

Nin �vi � � fvj jvj vi 2 E�G �g , (9)

Nout �vi � � fvj jvi vj 2 E�G �g . (10)
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If the loop vi vi exists then vi is a member of both its own in-neighbourhood and of its
out-neighbourhood.

Formally, then, a graph-CA model consists of a directed graph G, and a set of
allowed cell (or vertex) states S � fsjg. G consists of spatial elements represented by
the vertex set V(G ) and directed relations between those elements represented by the
arc set E(G ). In any graph, the neighbourhood of a vertex vi consists of all the other
vertices (or locations) in V(G ) to which it is adjacent. In the context of building a
dynamic proximal model we may regard the in-neighbourhood of vi , Nin (vi ) as the set
of influencing locations. We use a `(t )' superscript to indicate the particular state
attaining at a vertex, or the collective state in a neighbourhood, at time t, as opposed
to the set of allowed states S and its elements fsjg (with no superscript). Thus, s �t�i is the
state of location vi at time t, and the cellular automaton aspect of the model is
incorporated according to

s �t�1�i � f �S �t�i � , (11)

where S �t�i is the set of states of the in-neighbours of vi at time t, that is,

S �t�i � fs �t�j jvj 2 Nin �vi �g . (12)

Note that S �t�i will always be some combination of the allowed cell states in S. Also, in
most cases, vi vi 2 E(G ), so that vi 2 Nin (vi ), and the state of a location at time (t� 1)
is partly dependent on its state at time t, as we would expect.

3.1 Graph-CA as a reworking of geo-algebra
The relationship between this description and geo-algebra should be immediately
apparent. The set of allowed cell states S, is equivalent to the set of possible location
values V in geo-algebra, and can be similarly generalised to the multivariate case. Each
vertex vi 2 V(G ) in the graph-CA, has a set of influencing vertices Nin (vi ) in the same
way as the local relational map Ri of geo-algebra represents those locations which
influence location li . The metarelational map of geo-algebra is equivalent to the
complete set of graph arcs E(G ) which defines all the in-neighbourhoods of influencing
locations.

We can also see this if we consider the adjacency matrix A of a graph G. A(G ) is
defined such that

A�G � � �aij �, where aij �
1, ()vi vj 2 E�G �,
0, otherwise.

(
(13)

The adjacency matrix of a directed graph may be asymmetric with aij 6� aji . Now, if we
write each location's relational map Ri as a vector Ri .

Ri �

r1i
..
.

rji

..

.

rni

26666664

37777775, (14)

where rji � 1 if location lj influences li , and 0 otherwiseöas in equation (5)öthen the
equivalence between the metarelational map R and the graph G can be seen from the
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fact that A(G ) may be written

A�G � �
a11 . . . an1
..
. . .

. ..
.

a1n . . . ann

264
375 � RT

1

..

.

RT
n

264
375. (15)

These equivalences between the graph-CA and geo-algebra formalisms are summarised
in table 1. The equivalence of the two approaches is no coincidence: their close corre-
spondence arises from a common origin in a desire to represent dynamic, proximal
spatial models.

In considering the usefulness of the graph-CA formalism it now makes sense to
examine it from three perspectives: first, graph-CA are graphs; second, they are a
variety of CA; and third they are both graphs and CA. Each of these aspects is
considered in turn in the sections which follow.

4 Graph-CA as graphs: understanding model structure
The graph-CA formalism has an advantage over geo-algebra in its ability both to
suggest structural forms for cellular models which could be built, and to allow model
structures to be described, compared, explored, and represented in various ways. The
graph-theoretic framework enables us to specify model structures concisely. This is
demonstrated below where some further graph-theoretic ideas are introduced in sec-
tion 4.1 and are used as the basis for a discussion of potential model structures in
section 4.2. Further generic tools provided by graph theory which assist in model
description are discussed in section 4.3.

Before introducing yet more formal description in the next section, it is useful to
pause and consider figure 1 (see over). This illustrates a graph-CA model of the
gentrification process in a small urban fragment (see O'Sullivan, 2000, for details).
Some of the flexibility which the `spatial relaxation' of cellular automata provides is
especially clear. Any set of spatial elements, not just cells in a grid, may be built into a
model of this type (compare the examples in Takeyma, 1997). The main proviso is that
the elements can be meaningfully related to one another by relations of influence (in
this case predominantly relations of spatial nearness), provided plausible transition
rules can be devised. Furthermore, the choice of which relations countöwhich graph
edges to includeöbecomes an integral part of the modelling process, intimately related
to the development of model transition rules. The modeller must bring to bear theories
about the process under investigation as its effects operate across space. In fact, we
may regard the proximal model of space as represented in graph-CA, as one possible
formal expression of Gould's portrayal of the geographer's view of space:

Table 1. The direct equivalence relationships between the graph-CA and geo-algebra formalisms.

Graph-CA Geo-algebra

element notation element notation

Vertex set V(G ) Locations L
Allowed states S Values V
In-neighbourhoods Nin (vi ) Local relational maps Ri

Graph arcs E(G ) Metarelational map R
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`̀ ... we start with the idea that this strange no-thing [space] is structured by other
things, which we relate in various ways to each other, and which we measure as
various distances to each other as the fancy takes us according to our purpose of
utility, curiosity, or ambition'' (1997, page 128).

4.1 Multigraph-CA
A further sense of the riches unlocked by the graph-CA formalism is best provided
after a little more dry formalism has been introduced in the shape of the multigraph-
CA. It should be emphasised that a multigraph-CA is not an extension of the graph-CA
formalism. Rather, it is a description of a structure to which a particular graph-CA
may conform. The multigraph-CA allows us to envisage various model structures
which might be built or observed, which seem likely to have very different dynamic
properties. Following the formal description of multigraph-CA below, some of these
potential model structures are described and discussed in section 4.2.

A multigraph-CA is a graph-CA G which may be partitioned into a set of z
subgraphs fG1 , .::,Gm , .::,Gzg. Each subgraph Gm is made up of a set of vertices

Vm �Gm � � fvm1 , .::, vmnm g , (16)

where nm � jGm j, and a set of arcs

Em �Gm � � fvmi vmj jvmi , vmj 2 Vmg , (17)

Usually, the partition of G will be nonoverlapping, so that no vertex is a member of
more than one set, thus

Vm \ Vn � ;, 8m, n , (18)

although this need not always be the case. Each `subgraph-CA' Gm has a distinct cell
(vertex) state set Sm and may thus have CA-like transition rules defined on it, as for a
simple graph-CA [refer back to equations (9) to (12)].

As described so far, there is no interaction between the subgraph-CA in G. This is
introduced by defining further arc sets between the vertex sets in G where

Emn � fvmi vni jvmi 2 Vm ^ vni 2 Vng . (19)

Figure 1. A portion of a graph-CA model. `Cells' in this model are individual buildings and the
graph structure shown represents cell neighbourhoods which are used to determine the evolution
of particular cell states.
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By using this notation, the set of arcs in graph Gm is written Emm . Equation (19) implies
that Emn � Vm � Vn . The whole graph-CA G(V,E ) has vertex set

V �
[z
m � 1

Vm , (20)

and arc set

E �
[z
n � 1

[z
m � 1

Emn . (21)

In the overall graph-CA the influencing neighbourhood on which the CA rules are
defined may be made up of cells (vertices) both within the same subgraph-CA, and
from other subgraph-CA so that

Nin �vmi � �
[z
f � 1

fvfj jvfj vmi 2 Efmg . (22)

Note that since Nin (vmi ) may contain vertices from a number of subgraphs Gf in G,
each with states defined on a different state set Sf the definition of transition rules may
become fairly complexöif only because there are likely to be more cell states defined
by the collection of sets fSfg than by a single state set S.

4.2 Interpretations of the multigraph-CA
As described, a multigraph-CA is no different from a simple graph-CA except that
not all possible states are allowed at all cells, a situation which could attain in any
graph-CA where not all state transitions were possible. However, if we place further
limitations on the interrelations and properties of the various subsets of vertices and
edges defined above, we may interpret the resulting graph-CA in a range of ways, both
spatial and aspatial, and use these interpretations as a basis for the construction of
interesting urban and regional models. Some of the possibilities are discussed below.

4.2.1 Hierarchical graph-CA
If the subgraphs in G can be ordered so that

Emn � ; () jmÿ nj > 1 , (23)

then we may regard the multigraph-CA as hierarchical or layered. In a hierarchical
graph-CA the subgraphs in G may be regarded as organised in a sequence of layers,
with no arcs joining vertices in nonadjacent layers. A representative three-layer model
of this type is illustrated in figure 2(a) (see over). The most obvious spatial interpreta-
tion of such a model in an urban context is that the lowest layer G1 is some subdivision
of an urban system into small units (as in figure 1), and successive layers G2 , .::,Gz

represent successive higher level aggregations of elements in the layer below. In this
particular interpretation jVm j4 jVmÿ1 j, although this need not be true in general.

We can further refine our interpretations of such a model with reference to the
relations between the various subgraphs. In the general hierarchical case, described by
equation (23), influential relations between adjacent layers are mutual, so that over
time, various feedback effects are likely. If only within-layer and upward arcs exist, that
is Emn � ; () m > n, we may think of the hierarchical graph-CA as a bottom-up
network of relations of influence, wherein the state of an element in any layer is
influenced only by other elements in its own layer or the layer below; if
Emn � ; () m < n then the network of relations is top-down and element states are
only affected by other elements in the same layer or the layer above.

Such hierarchical models seem likely to be of use in exploring a broad range
of geographical systems. The relationships between globalisation and changes at
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national, regional, and local scales are frequently commented upon, and a hierarchical
graph-CA seems well-suited for exploring the dynamics of spatial systems with this
type of organisation. There would be no requirement in such a model for lower layers
to be complete, so that, for example, a neighbourhood could be modelled in detail
(again, see figure 1), set in its urban, regional, national, and global contexts, without
other cities being modelled to the same level of detail. This possibility is schemati-
cally illustrated in figure 2(b). Note that this approach could, with care, allow the
development of a modular model framework.

The hierarchical graph-CA is thus a very general model structure. The generality of
the graph-CA formalism may be further demonstrated by reinterpreting two common,
operational modifications of CA as multigraph-CA also.

(a) (b)

(c) (d)

G3 (V3 ,E33 )

G2 (V2 ,E22 )

G1 (V1 ,E11 )

E23 [ E32

E12 [ E21

Global

National

Regional

variable n

variable 2

variable 1

City

Suitability indices

Figure 2. Generalising CA using the graph-CA concept. Note that arcs are shown as undirected
edges for clarity. (a) A three-layer hierarchical graph-CA, (b) a hierarchical graph-CA in which
only one element in each level is modelled in detail at the next level down, (c) a nonhomogeneous
graph-CA where suitability indices are represented as a subgraph, and (d) a multivariate graph-
CA (dotted lines indicate that vertices in each layer are identical; arcs between layers are not
shown, for clarity).

696 D O'Sullivan



4.2.2 Nonhomogeneous (zoned) graph-CA
As mentioned previously, a frequent deviation from the strict constraints of classic CA
models in urban modelling is to have nonhomogeneous cells. A frequent instance of
this is the assignment of a `suitability' index to each cell based on the process under
investigation. For example, in their urban growth model of the San Francisco Bay area,
Clarke et al (1997) introduce land slope as a generalised measure of the suitability of
individual cells for urban development. This interacts with the current demand for land
so that the maximum land slope of cells which may host urban growth varies. This may
be interpreted as a multigraph-CAösee figure 2(c)öif we divided the vertex set into
two subsets, so that one represents a conventional (grid-based) CA, and the other
consists of vertices each representing a finite, discrete suitability index. Each vertex in
the conventional CA subgraph then has one in-neighbour in the suitability index
subgraph, which affects its state transitions as the model runs. In principle, a number
of discrete-valued cell properties could be associated with a standard cellular model in
this way. Note that, as shown in the figure, there might be no arcs internal to the
subgraph representing suitability values, which are therefore fixed. If this were not the
case, the suitability layer might itself be a cellular model of some nonspatial process.

4.2.3 Multivariate cell states
Takeyama and Couclelis (1997, pages 88 ^ 89) show how a dynamic, multivariate CA-
based model can be conceptualised and constructed in geo-algebra. The ability to cope
with multivariate states is important in urban models given the rich diversity of elements
which will constitute any subdivision of a city. This depends on extending the multi-
variate value at each location (see equation 2 above) to a z-layer metarelational map,
so that it becomes a family of metarelational maps,

R � �fR11 .::R1zg.::fRi1 .::Rizg.::fRz1 .::Rzzg
	
. (24)

This is closely related to the subdivision of the arc set of a multigraph-CA into subsets
Emn as described by equation (19) above. We can see that if we drop the restriction on
overlapping subgraphs [that is, ignore equation (18)] then it is perfectly possible for a
multigraph-CA G to have vertex subsets fV1 , .::,Vzg such that Vm � V(G ) for all
m 2 f1, 2, .::, zg. Since each vertex subset Vm has a distinct state set Sm , different arc
sets may be defined internal to and between each `layer' as before, and the graph-CA
formalism can then represent multivariate cell states in the same way as geo-algebra.
Figure 2(d) is a schematic representation of this approach.

Finally, one further extension of the graph-CA concept is possible, regardless of
whether it is a multigraph-CA or not.

4.2.4 Mutation of graph-CA models
Since graph-CA models are potentially variable in their cell states, their rule sets, and
their spatial (graph) structure, it is a relatively simple matter to condition changes in
the graph structure on the existence of various local neighbourhood states. Such
changes would be dependent on the types of relationships represented by arcs in the
underlying graph. In a relatively clear cut case, where arcs represent transport links
between settlements, new arcs might be introduced when two settlements had reached a
certain size, to reflect their mutual influence. Of course, there are complications. The
appearance of new arcs between otherwise unrelated vertices implies the introduction
of CA rules which do not operate on the current neighbourhood alone, a significant
step down the slippery slope towards model complication and confusion. However, in
the context of operational models which aim at some sort of realism, the potential for
mutation of the underlying model structure may be of significant interest. It is note-
worthy that we may interpret some of Allen's (1997) models as graph-CAs capable of
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mutation in this sense. Semboloni (2000) has conducted some experiments with a
mutable, irregular CA approach to urban growth modelling which indicates the poten-
tial of the approach. An attractive feature of this type of model is that it makes the
spatial structure of a model over time dependent on spatial processes, so that the two
become mutually constitutive. This is an exciting possibility given the dominance of
such dialectical conceptualisations in geographical theory [see, for example Soja (1989)
who discusses the `sociospatial' dialectic, together with later formulations of the same
basic idea].

Combining some of the above suggestionsöespecially spatial hierarchy and struc-
tural change of the modelöwould certainly result in substantially more complex
models, but is nevertheless an intriguing, further possibility.

4.3 Describing graph-CA model structure using graph theoretic measures
Whether a graph-CA model can be regarded as a multigraph-CA or not (this will
depend greatly on the intentions of the model builder), the fact that any graph-CA
model is running on a graph is in itself significant, because it immediately provides
access to ways of describing, measuring, and exploring the model structure in graph
theoretic terms. This is a by-product of the generality of the graph abstraction (for a
sense of the widespread use of graphs, see Beineke and Wilson, 1997; Haggett and
Chorley, 1969; Jungnickel, 1999; Krafta, 1994; 1996; Kru« ger, 1979a; 1979b; Wassermann
and Faust, 1994).

The diagrams in figure 3 are intended to distinguish three distinct kinds of struc-
tural measure, which can be identified. Figure 3(a) shows a `typical' graph. One of the
most obvious questions to ask about a graph is, `̀ which are the most important
vertices?'' One answer to this question is to define various measures of centrality, as
schematically illustrated in figure 3(b) where paler greys indicate more central vertices
according to some criteria. Another approach to the structural description of graphs is
to identify particularly tightly interrelated subsets of the graph verticesögenerically
termed cohesive subgroups and illustrated in figure 3(c). A third aspect of graph
structure relates to the identification of structurally equivalent vertices. Such vertices
occupy similar positions in the graph's structure (end vertices with only one neighbour

(a) (b)

(c) (d)

Cohesive
subgroups

Structural
equivalence

Centrality

Figure 3.Various kinds of graph structural measure illustrated.
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are an obvious example). This is schematically illustrated in figure 3(d). Various meth-
ods and measures for defining these three broad descriptors of graph structure in
particular cases have been developed (see Wassermann and Faust, 1994). Additionally,
recent developments in visualisation techniques, particularly in the automated drawing
of graphs so that their structure becomes more visually apparent, also deserve atten-
tion in this connection (see Tollis et al, 1999) since they may enable structural features
to be identified which are not immediately describable in terms of any of these
measures.

The important point is not that any particular measure of graph structure be used,
since different measures are likely to reveal similar patterns in any individual case
(Donninger, 1986), but that the generality of the graph representation of a relational
system, together with its widespread adoption in various disciplines, means that a
range of approaches are readily available to the modeller. We return to this point in
section 6.

5 Graph-CA as a variety of cellular automata: understanding model dynamics
CA are a well-understood class of discrete dynamic model, and graph-CA are a
variation on that theme. This aspect of urban CA-based models has generally not been
emphasised by researchers in the field, who have tended to emphasise the interactive
and visual appeal of building CA-like models.

Although the tools of analysis for cellular automata are less well developed than for
graphs, they are still considerable. Since the most significant observable fact about CA
is their unpredictable and varied dynamic behaviour, theoretical work on CA has
concentrated on developing ways of understanding this behaviour. Wolfram's (1983)
paper is a key contribution. He conducts a phenomenological survey of the behaviour
of the simplest class of CA imaginable: linear CA with just two allowed cell states,
where each cell has its immediately adjacent cells as neighbours. His surprising finding
is just how varied the behaviour of even such simple examples can be. Based on this
and the investigation of further, only slightly more complex cases (five cell neighbour-
hoods, with three or four allowed cell states), Wolfram suggests that four qualitative
classes of behaviour can be identified: class-1 CA evolve in a short period of time to a
unique homogeneous state; class-2 CA may attain final states which exhibit periodicity
over time; class-3 CA evolve to aperiodic chaotic behaviour which, although it is totally
deterministic, is unpredictable, except with complete knowledge of the initial state; and
class-4 cellular automata exhibit complex behaviour. Such behaviour has hierarchical
structure. Class-4 behaviour is characteristic of systems capable of computation, which
may be `programmed', and are therefore capable of arbitrarily complicated behaviour.
In fact, much of the theoretical and practical interest of CA rests on the existence of
class-3 and class-4 cases, whose behaviour may be analogous to that of unpredictable
physical, chemical, biological, and social systems.

Significantly,Wolfram also proposes a method for quantitatively characterising the
behaviour of these (and potentially any) CA, based on the observation that the time
evolution of some measure of system disorder will be different for the four classes. In
particular, class-3 systems will produce long-term, apparently random system change
at a high level of disorder, whereas class-4 systems exhibit long-term variations where
periods of disorder are interspersed with periods of order. Disordered and ordered
regimes are likely to interact unpredictably over time.

Wolfram (1984) suggests that an entropy measure may be used as the basis of a
method for classifying CA into behavioural classes, and defines a `spatial set entropy' as

S�X � � ÿ 1

X

XsX
j � 1

pj logs pj , (25)
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where pj denotes the frequency of occurrence of each of the sX possible neighbourhood
states in sequences of cells of length X, with s allowed cell states. This measure is in the
range 0 to 1, where 0 indicates a very ordered arrangement of cell states and 1 indicates
a completely disorganised arrangement of states. Note that the measure is applied over
some sequence length of cells, X. A particular configuration of cell states may seem
random at X � 1, but exhibit order at some other value of X. The suggestion of a
measurement method is critical to any attempt to extend Wolfram's work beyond
simple one-dimensional CA whose temporal evolution is very easily explored in con-
trast with two and higher-dimensional cases (this issue is explored more thoroughly in
O'Sullivan, 2001).

Note that statistical measures of the entropy type have appeared in the geography
literature (Batty, 1974) but have been used relatively little in practice (Morrill, 1995,
provides a rare example). Wolfram's usage is distinct from these, partly because sum-
mation is carried out over cell neighbourhood states, not individual cells, but also, more
importantly, because he is concerned with the time evolution of the measure, and not
with its value at any particular moment. Note also that it helps if we do not focus too
closely on the precise `meaning' of entropy in this context [the entropy concept has a
long history of use and misuse across a variety of disciplines as Couclelis (1984) makes
clear]. Wolfram's use of the concept is primarily for the ability of its functional form to
measure the (dis)order in a frequency distribution, but also has close affinities with
Shannon's entropy from communication theory.

As in section 4, the important point is not the particular measures used in any
particular case, but the observation that CA dynamic behaviour is describable with
reference to well-understood ideas about dynamic complexity. Of course, it may also be
that animations and other visualisations of the behaviour of a model provide insights
and ideas not clear from a measure of the kind discussed here. The key issue is that by
virtue of their being close cousins of simple CA, graph-CA models are also amenable
to investigation in the way which Wolfram describes.

6 Graph-CA as both graphs and CA: theoretical structure-process research using
graph-CA
We now turn to a novel opportunity for further research which is enabled by the graph-
CA formalisation of certain types of discrete model. We have already seen that the
advantage of the graph-CA approach is not in the formalisation per se, but in the ways
of thinking about aspects of the resulting models which are provided by its joint
derivation from graphs and cellular automata. A graph-CA may be characterised in
terms both of its structure represented by a graph, and also of its dynamic behaviour
by adapting ideas from research into CA.Work on the behaviour of CA gives us a way
of thinking about the dynamics of spatial processes. Graph-CA, by also admitting the
use of measures of graph structure, thereby enable investigation of the influence of
spatial structure on spatial process dynamics. The graph-CA therefore enable explicit
exploration of relationships between the structure of spaces in which processes unfold
and the sorts of dynamic behaviour which occur. This may shed light on long-standing
concerns about the relationships between spatial structures and spatial dynamics,
and represent a specifically geographical avenue for research into the dynamics of
complex systems. This potential has been clearly signposted in previous sections, and
we can now expand on the possibility.

As a preliminary step, it is useful to consider the place of graph-CA models relative
to similar and related models. In figure 4 three types of discrete modelöcellular
automata, graph-cellular automata, and Boolean networksöare schematically related
to one another. This helps to place these models in a research context, and suggests the
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particular relevance of graph-CA models to geographical and geocomputational
research. Cellular automata themselves are the most closely related models to graph-
CA. Another kind of discrete modelöthe Boolean networköis also related. A Boolean
network consists of a directed graph of vertices, each of which may be in either the `on'
or `off' state. Note that in a classic Boolean network, only two vertex states are allowed
(hence the term `Boolean'), however the idea can clearly be extended to multivalent
logics. The state of each vertex at time (t� 1) is determined by the states of its in-
neighbours in the graph at time t. This is very much like a graph-CA. However, in a
Boolean network, the rules relating each vertex's state to its in-neighbourhood state
need not be the same throughout the network.

Figure 4 indicates two axes of variation among these models. First, it is possible for
the spatial structure of the discrete model elements (the cell space, lattice, or graph
structure) to be homogeneous or invariant from location to location, or to vary across
the system. Conventional CA are stationary in this sense, whereas graph-CA models
are not. Boolean networks are also nonstationary in this sense. Second, the rules
representing processes in a model may be stationary or nonstationary. Both CA and
graph-CA models are stationary, whereas Boolean networks are nonstationary. Note,
however, that as a graph-CA model's cell space structure departs further from statio-
narity, it is unlikely that its process rules can be regarded as absolutely stationary. This
is because there is an unavoidable interaction between the size of cell neighbourhoods
and the impact of process rules, because it is difficult (if not impossible) to express
rules so that they can be considered invariant across a range of neighbourhood sizes,
from only a few cells, to (perhaps) tens or even hundreds of cells.

The framework of figure 4 identifies the particularly geographical interest of graph-
CA models, because it draws attention to the fact that the main axis of variation
between CA and graph-CA models is spatial. This implies that investigating the
changes which occur in the transition from a CA to a graph-CA model may shed light
on the specifically spatial effects in such discrete models. We can further see that
exploration of the effect of spatial structure on spatial dynamics is possible at two
distinct levelsöthe global and the local.

nonstationary

stationary
regular
CA models

stationary nonstationary

`boolean
networks'

Cell space structure

graph-CA
models

R
ul
e
sp
ac
e

Figure 4. Graph-CA in relation to other discrete cellular models. Graph-CA have nonstationary
spatial structure, but stationary transition rules. However spatial structure and rules are
not wholly independent so that very irregular structures prevent definition of truly stationary
transition rules.
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6.1 Global relations
As discussed in section 4, it is possible to consider the structure of the graph which
underlies a graph-CA model both in terms of the interrelations which may exist
between defined subsets of the verticesöthe multigraph-CA approachöand also by
using theoretic measures of various aspects of graph structure. Either of these
approaches, together with more exploratory approaches based on visualisations of
various redrawings of the graph could be adopted in trying to understand whether
there are systematic relationships between model structures and model dynamics. For
example, by using vertex centrality measures, we could quantify the extent to which a
model is centralised on particular cells. The relationship between such measures of
overall graph structure and the dynamic behaviour of various graph-CA running on
it may be of interest. In the simplest case we might hope to find a relationship
between some centralisation measure and the Wolfram class of the graph-CA. Perhaps
more realistically, as was implied in the discussion of hierarchical graph-CA, we could
examine the differences between bottom-up and top-down hierarchical models. Exam-
ples of similar research are Kauffman's (1984) random Boolean networks and, more
recently, investigations of the behaviour of `small world' networks by Watts and
Strogatz (1998). Both Watts and Strogatz's and Kauffman's work focus on particular
system architectures which differ greatly from likely geographicalöor proximalö
graph-CA models. Nevertheless, these cases establish the possibility of making general,
yet useful, statements about the relationship between a system's overall global structure
understood as a graph, and its dynamic behaviour.

In more recent work examining the behaviour of CA running on small world
networks, Watts (1999, page 187) comments that `̀ ... it is natural to ask whether or
not high-performance CAs can be developed by varying the coupling topology of the
automata instead of their rules'' [original emphasis]. The relationship between Watts's
concerns and interesting research questions for graph-CA modelsöcan relationships
be found between the structure of the graph in a graph-CA and dynamic behaviour of
the model?öis clear. Obviously,Watts's interest is expressed in terms appropriate to an
engineering problem, whereas the geographical research proposed here is concerned
with developing an understanding of already existing real-world spatial systems.
Research is ongoing on graph-CA models which adopt this global approach, examines
the issues raised in more detail, and presents some initial results suggesting that the
relationship between model structure and dynamics can, indeed, be fruitfully explored
in this way (O'Sullivan, 2001).

6.2 Local relations
Another aspect of the structure ^ process investigation of a graph-CA model is to
examine whether there is a relationship between local measures of individual elements
in the graph and their individual dynamic behaviour. Questions such as ``which vertices
(cells) are most influential in determining model outcomes?'', and `̀ are the most central
vertices (cells) more or less stable in their states than peripheral vertices?'', or `̀ do
structurally equivalent vertices in the model behave in similar ways?'' then become a
rich source of ideas and hypotheses in seeking to examine the model and its behaviour.
The various kinds of graph structure measures discussed in section 4.3 could all be
brought to bear in this approach. We might find that members of different cohesive
subgroups in the graph behave differently, that vertices which belong to different
structural equivalence classes behave differently, or that there is a relationship between
vertex centrality and behaviour. Any of these localised relationships might also produce
significant insights into the way in which the model behaves globally, and therefore into
the way in which those aspects of the world being modelled behave. These sorts of
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relationships are akin to the usual concerns of the spatial modeller or analyst to
find relationships between locational variables and behaviour, albeit with more of an
emphasis on the system dynamics. The current approach is a potentially useful new
way of thinking about these issues.

7 Conclusions
The graph-CA model clarifies aspects of geo-algebra, which are somewhat obscured by
a focus on formalising the distinction between site and situation, without providing
conceptual tools with which this local ^ global relationship can be properly grasped.
Realising that the relationship is precisely represented by the implied underlying graph
and making use of that fact is key to the present contribution. The graph-CA approach
thereby makes two aspects of the geo-algebra a little clearer. First, underlying spatially
generalised CA is a global relational structure, which may be described, measured, and
visualised quite independently from the behaviour of the CA. Such description and
visualisation enables us conveniently to construct, envisage, and represent further more
complex model structures than hitherto. Examples of the possibilities have been pro-
vided in section 4.2. Second, any set of spatial elementsöpoints, lines, areas, or
mixtures of all threeöcan be built into a proximal model, provided meaningful
neighbourhood relations can be constructed among them. Further, such spatial elements
need not be space-filling or nonoverlapping, and may in fact consist of interrelated sets of
elements at different scales or derived from different perspectives. This aspect has also
been emphasised in the discussion of multigraph-CA structures in section 4.

There is also potential value in interpreting at least some of the great variety of
`urban CA' as graph-CA. Realising that there are closer affinities between some of
these numerous variations on the CA theme than is immediately apparentöthat, in
fact, many of them are examples of the same class of model, possibly with describable
differences in their relational structuresömight also enable us to regain some of the
promised insights of simpler strict CA (see also O'Sullivan and Torrens, 2001; Torrens
and O'Sullivan, 2001). In this context, the various types of graph-CA model described
in section 4 add further to claims for the generality and wide applicability of cellular or
discrete models. It also suggests that it may be time to reconsider the continued
usefulness of the term c̀ellular automaton'öperhaps discrete relational automaton
would be a more accurate, less restrictive label.

Whatever we call them, such models can also be usefully examined in relation to
well-established ideas about dynamic systems. Then the graph-CA may enable theoret-
icalöas opposed to practical `model construction'öprogress to be made. Here, the
usefulness of the graph-CA formalism lies in the link it provides to well-understood
and developed tools and concepts for examining both the structure and the dynamics of
the resulting models. It thus opens up the possibility of using the investigative frame-
work suggested in sections 5 and 6, to address long-standing questions about links
between the spatial structure of urban and regional systems, and the dynamics of the
changes (and continuities) which occur in those systems. Reference to related research
in biology and physics has been made which indicates the potential of the approach,
and research based on the concepts outlined here is ongoing (O'Sullivan, 2001).
Together, these practical and theoretical aspects suggest that the particular relaxation
of CA invokedöthe allowance of nonregular spatial structureömay have far-reaching
and interesting implications for geographical modelling.
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