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We report nonparametrically estimated stochastic transition kernels for the evolution
of the distribution of U.S. metropolitan area populations, for the period 1900 to 1990.
These suggest a fair amount of uniformity in the patterns of mobility during the study
period. The distribution of city size is predominantly characterised by persistence.
Additional kernel estimates do not reveal any stark differences in intra-region mobility
patterns. We characterise the nature of intra-size distribution dynamics by means of
measures that do not require discretisation of the city size distribution. We employ these
measures to study the degree of mobility within the U.S. city size distribution and,
separately, within regional and urban subsystems. We find that different regions show
different degrees of intra-distribution mobility. Second-tier cities show more mobility
than top-tier cities. © 2001 Academic Press
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1. INTRODUCTION

Empirical studies of the distribution of city sizes have a long and distir
guished history. At least 80 years ago, it was observed that the distribution
cities within an urban system is often remarkably well approximated by
Pareto distribution. This observation has generated a vast body of empiri
work aimed at testing this and related propositions. Much of this work hg
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concentrated on testing the rank-size rule first proposed by [Zigf? 29. Th
large empirical literature has, in turn, led to the development of a number
theoretical models which attempt to generate this apparent regularity. Tt
collection of models is essentially statisticathey seek to generate, rather than
explain, the regularity. To do this, they abstract from underlying economic c
social processes that drive the evolution of city sizes. The importance of tl
rank-size rule in framing the discussion about the distribution of city sizes he
had two important implications for the literature on the development of th
urban system. First, it has led to the acceptance of simplistic models th
downplay important economic and social forces but that are capable of replic
ing the regularity. Second, it has relegated work on other aspects of tl
distribution to a distant second place. This paper is primarily concerned wi
these other aspects of the distribution.

With respect to the first implication, recent work by a number of theorists
who developed the so-called new economic geography, highlights the problel
that the rank size rule has presented for theoretical work. In common with ¢
older theoretical literature, these authors have emphasised the interplay
agglomeration and dispersion forces as key in determining city sizes. Howev
they have also emphasised the fact that “when it comes to the size distributi
of cities, . .. the problem we face is that the data offer a stunningly neat pictur
one that is hard to reproduce in any plausible or even implausible theoretic
model” (see Fujitaet al [12, Chap. 1P . For the earlier literature, see Simor
[27], Krugman[ 17 , and Gabalx 13, who propose models capable of gener
ing regularities in the distribution of city sizes.

The second implication has received very little direct attention. The empiric:
work on the rank-size rule is essentially involved with one particular characte
istic of the distribution of city sizes-the shape of that distribution. In contrast,
this paper examines intra-distribution dynamics. It asks questions about hc
cities develop relative to the rest of the urban system, both in terras of ordine
rankings and relative sizes. We propose a number of techniques for characte
ing this intra-distribution mobility.

We do not see characterising this intra-distribution mobility as a substitute
direct tests of either the economic or the stochastic models of the developm
of the urban system. Economic models are only infrequently asked to pred
the shapes of distribution of endogenous variables of interest, so there is
reason to be unduly demanding with regard to the dynamics of the distributic
of city sizes. To the extent that economic models help us understand t
economic forces that might promote agglomeration or drive dispersion, failu
to match empirical regularities on city sizes should not lead to an outrigt
rejection of those models. However, given that the aim of stochastic models

2 The rank-size rule( or Zipf's la)v states that the city size distribution follows a Paretc
distribution with exponent one. See Overnjan 19, Chap. 4 .
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to help us understand the nature of the process that might produce the rank-
rule, it would seem important that these models also deliver on other aspect:
the city size distribution. Stochastic models which generate the shape of 1
distribution, but only at the expense of unrealistic intra-distribution dynamic
may well be uninformative about the processes at work.

This paper proceeds as follows. Section 2 reviews some of the relat
empirical and theoretical literature. Section 3 briefly describes the data. Sect
4 develops a number of empirical tools which can be used to analyse intra-c
tribution dynamics. We use these tools to examine the evolution of the U.S. ¢
size distribution from 1900 to 1990. Section 5 concludes.

2. RELATED LITERATURE

There is a vast empirical literature on the distribution of city sizes. A ver
selective account follows, which seeks to highlight the main issues and thc
most closely related to the empirical work in this paper. A number of extensi
surveys exist: Carrol[ 7 covers earlier work in some detail; Cheshile |
provides a survey of more recent work.

At least as early as Auerbadh] 3 it had been proposed that the city s
distribution could be closely approximated by a Pareto distribution. Thus, if w
rank cities from the largest rank) 1 to the smallést rahk then r(p), the
rank for a city of size( populationp, obeysr(p) = Ap~*. Or, taking logs,

Inr(p)=INnA—-alnp. (1)

Rank may equivalently be measured by the countercumulative of the s
distribution.

Zipf [29] went further. He proposed that not only did the distribution of city
sizes follow a Pareto distribution, but it took a special form of the distributio
where a = 1. This expression of the regularity is known as the “rank-size”
rule (or Zipf's rule and has formed the starting point for much of the empirics
literature. It implies that the second biggest city is half the size of the large
the third biggest is one-third the size of the largest, etc.

Rosen and Resnidk 24 brought together the questions from a large body
literature developed from the 1950s to the 19¥08hey highlighted the
importance of the definition of the lower threshold size for citiesnd
considered how the urban system might be best defined. We will return to tl
second issue briefly in Subsection 4.2 below.

A further two decades of work has followed with two key conclusions. Th
first, less controversial, is that the city size distribution is reasonably we
approximated by a Pareto distribution, at least for the largest cities. The secc

% Key contributions included Allef ]1, Madddn 118, and Beiry 4.
4 This is a recurring theme in the urban system literature. See Black and Hendefson 5
Dobkins and loannidels 10 for a recent discussion.
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far more controversial, is that the exponent of the Pareto Law, coefficieint
Eg.(D, is close to one. Some authors, notably Krugimah 17, have argued t
the combined evidence suggests that the rank-size rule holds for a number
different samples over a number of different time periods. Others, such
Alperovich[ 2, reject this stronger second conclusion, but accept the first. Tt
debate still rages. Dobkins and loannides] 10 obtain good fits, by performir
the OLS of the countercumulative of the city size distribution against th
logarithm of populatior{ along the lines of Eg))1 and by maximum likelihooc
directly in terms ofr(p) = Ap~“. Their estimates for U.S. cities, for 1900 to
1990, showx decreasing over time. In common with other work, they find that
the exponentx is around one for a sub-sample of the largest cities, but beloy
one for the whole sample. However, when they compare the fit of the Pare
Law with a nonparametric one obtained with the generalized validation crite
rion, they find that the fit of the Pareto Law is poor for a substantial portion o
the distribution, thus raising doubts about the validity of the strict rank-siz
rule. Black and Hendersdn] 5 use simi{ar though not identical data, and reje
Eqg. (D as they find a significant quadratic term forgnas well.

These last two papers also consider a number of issues related to
intra-distribution mobility characteristics of the city size distribution. Both build
on Eaton and Ecksteih 11, who use transition probability matrices to chara
terise the evolution of the French and Japanese urban systems and find that t
these systems are characterised by parallel growth. Cities tend to grow at
same rate, maintaining their place in the relative distribution and consequen
showing little intra-distribution mobility. In contrast, Dobkins and loannides
[10] find that the U.S. system is characterised by the entry of new cities and
higher degree of mobility. Black and Henderdoh 5 confirm this result. The
show that new entry means that cities tend to be more mobile up to tt
distribution, but less mobile down the distribution. The expected transition tim
from lowest state to highest is around 500 years. Movement in the oppos
direction takes, on average, 5500 years. This paper builds on these three pa
to provide a more detailed characterisation of the intra-distribution mobility o
cities within the U.S. city size distribution.

3. DATA

There are a variety of ways to define citiesn this paper, we use
contemporaneous Census Bureau definitions of metropolitan areas, with adaj
tions for availability. From 1900 to 1950, we have metropolitan areas define
by the 1950 censuUsThat is, for years previous to 1950, we use reconstruction
from Boguel 6 of what populations would have been in each metropolitan ar

® This section draws extensively from Dobkins and loannide$ 10 .
6 Technically, a metropolitan area must contain either a city of at least 50,000, or an urbaniz
area of at least 50,000 and total metropolitan population of 100,000 75,000 in New Bngland .
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in each year if the cities had been defined as they were in 1950. For e¢
decennial year from 1950 to 1980, we use the metropolitan area definitions t
were in effect for those years. Between 1980 and 1990, the Census Bur
redefined metropolitan areas in such a way that the largest U.S. cities wo
seem to have taken a huge jump in size, and several major cities would hi
been lost. While this might be appropriate for some uses of the data, it wot
introduce “artificial” intra-distribution mobility for the 198061990 period.
Therefore, Dobkins and loannides reconstructed the metro areas for 1990, be
on the 1980 definitions, much as Bogue did earlier. We believe that this giv
the most consistent definitions of U.S. citiés metropolitan areas that we ¢
likely to find.

The method raises a question as to which cities, as defined or reconstruc
should be included. In the years from 1950 to 1980, we use the Cen:s
Bureau'’s listing of metropolitan areas. Although the wording of the definition
of metropolitan areas has changed slightly over the years, the number 50,00
a minimum requirement for the core area within the metropolitan area. Thel
fore, we used 50,000 as the cutoff for including metropolitan areas as defin
by Bogue prior to 1950. Consequently we have a changing number of citi
over time, from 112 in 1900 to 334 in 1990. While it is often difficult to deal
with an increasing humber of cities econometrically, we think that this is a ke
aspect of the U.S. system of cities, and thus worthy of accommodating.

We also use information on regional location defined according to tf
Census Bureau division of the country into nine regidns see Big. 1. W
recombine these regions into five regions, when necessary. Table 1 provi
summary statistics of the data for each census year. Table 2 provides additic
statistics for the whole sample in 1990.

There are two important distinctions between our data and the data used
Black and Hendersohh ]5 for the same time period. First, they define tl
geographical area of a city as the collection of counties that form that city
1990. They then use the urban population of each of these counties to give
size in each census year from 190@90. This gets around problems relating
to changing definitions of metro areas between 1950 and 1990 that apply to ¢
data. However, it introduces an additional source of mismeasurement relating
the use of contemporaneous definitions of urban population that may char
throughout the period. It also means that collections of small towns in areas tl
will become cities are treated identically to genuine metro areas of a simil
size. Second, they use a relative cut-off point to define when a city enters ir
the sample, whereas we use an absolute cut-off point. Their use of a relat
cut-off point in combination with metro areas defined on the basis of urbe
populations means that their sample will tend to overstate the number
functional metro-areas in any given sample period. In contrast, our approe
based on an absolute cut-off point will tend to understate the number
functional metro-areas. Black and Henderson show that estimates of intra-dis
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TABLE 1
Descriptive Statistics: Dicennial Data 1901890
1 2 3 4 5 6 7 8
U.S.pop. U.S.urbanpop. Mean Median GNP  Distance Nearest

Year (000 ( 00D size size  bilioh  miles miles
1900 75,995 29,215 259952 121830 71.2 802.5 70.9
1910 91,972 39,944 286861 121900 107.5 863.8 68.3
1920 105,711 50,444 338954 144130 135.9 864.0 66.2
1930 122,775 64,586 411641 167140 184.8 876.9 64.8
1940 131,669 70,149 432911 181490 229.2 884.9 64.4
1950 150,697 85,572 526422 234720 354.9 890.8 65.3
1960 179,323 112,593 534936 238340 497.0 940.4 56.9
1970 203,302 139,419 574628 259919 747.6 981.3 52.5
1980 226,542 169,429 526997 232000 963.0 998.7 45.9
1990 248,710 192,512 577359 243000 1277.8 1005.3 45.5

Note All figures are taken from “Historical Statistics of the United States from
Colonial Times to 1970,” Vols. 1 and 2, and “Statistical Abstract of the United States,
1993.” Column 6 is GNP adjusted by the implicit price deflator, constructed from
sources above; 1958 100. Column 7 gives the average distance to all other cities.
Column 8 gives the average distance to the nearest city. Distances are calculated as
great circle distances based on latitudes and longitudes from the Times Atlas 1997
edition.
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TABLE 2
Descriptive Statistics for All Cities-1990

Variable Mean Std. dev. Skewness Kurtosis Min Max
Population( 00D 479.5 1001.5 6.6 58.8 50.7 9,372.0
Log (population 12.4028 0.9895 1.0 4.1 10.8343 16.374
Growth rate(%) 10.62 41.98 -1.1 5.8 —.999 1.8752
Education(%) 57.1085 20.9284 -0.4 1.8 11.80 92.73
Real wagd$) 3197.92 1132.37 0.2 2.3 1020.00 7311.00
New England 8.8
Mid Atlantic 12.8
South Atlantic 16.7
East North Central 20.3
East South Central 6.6

West North Central 9.1
West South Central 12.2
Mountain 4.6
Pacific 8.8

Note Data on education and real wage are taken from “Historical Statistics of the United
States from Colonial Times to 1970,” Vols. 1 and 2, and “Statistical Abstract of the United
States, 1993.” Educational percentage refers to the mean percent of 15 to 20 age cohort |
school. Mean real annual earnings, by city proper or metro areas, are in dollars, deflated by th
Consumer Price Index, 196 100.

bution mobility are sensitive to the choice of an absolute versus relative cut-c
However, a priori there is no reason to prefer one definition over another.

4. INTRA-DISTRIBUTION DYNAMICS

As Quah[ 21 has forcefully argued, typical cross-section or panel da
econometric techniques do not allow inference about patterns in the intertem
ral evolution of the entire cross-sectiongdistribution Such techniques do not
allow us to consider the impact over time of one part of the distribution upc
another, i.e., of the development of large cities as a group upon smaller citi
Making such inferences requires that one model and estimate directly the 1
dynamics of the entire distribution of cities. In contrast, typical panel da
analyses involve efficient and consistent estimation of models where the er
consists of components reflecting individual effe€ts random or Jixed , tim
effects, and purely random factors. The evolution of urbanization and suburb:
ization may affect individual cities so drastically as to render convention
methods of accounting for attrition totally inappropriate.

Examination of evolving cross-sectional distributions is most appropria
when the sample of interest is the entire distribution, and individual observ
tions are used to describe the entire distribution of population of metropolit:
areas in the U.S. We may elaborate further the process of evolution of t
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system of cities by considering alternative scenaria that articulate the spat
context. Consider first a situation where cities of uniform sizes are uniforml
spread over space. Appearance of new cities that are randomly scattered c
space is likely not to alter the pattern of uniformity. To the extent tha
geographical proximity leads invariably to agglomeration, this setting implie
creation of larger cities of uniform sizes. Consider, alternatively, cities o
uniform size scattered over space but in a way that exhibits clusterin
Appearance of additional cities of uniform sizes makes it more likely that eve
larger cities will be created through the agglomeration of existing ones.

Recall that our data consist of only 10 cross-sections, 1 for each of the
census years since 1900, with 112 metropolitan areas and 334 in 1990. We
these data to examine intra-distribution dynamics by first considering nonpar
metrically the long run transition patterns in the U.S. city size distribution. Nex
we introduce measures of intra-distribution mobility in the form of suitably
defined statistics of dispersion and serial correlation in changes in rankinc
Finally, we examine patterns in the intra-distribution dynamics within differen
groupings of cities, that is, in terms of geographical regions and hierarchic
tiers.

4.1. Intra-distribution Mobility

We will consider two inter-related types of intra-distribution mobility: changes
in the rankings of cities and changes in their relative sizes. Previous studies
intra-distribution mobility have studied both types of mobility without clearly
distinguishing between implications of those two different concepts. Eaton a
Eckstein[ 11, Black and Hendersdn] 5, and Dobkins and loanriidds 1
consider the size of cities relative to the mean city size. They then discretize t
state space of relative city sizes by defining discrete inteheald calculate the
transition matrices corresponding to this discretization. Only Dobkins an
loannideq 1D consider mobility in terms of the rankings of cities by discretiz
ing the state space in each period on the basis of quartiles bott6 10
second 1@, ...,top 1G%). They argue that this gives a more detailed insight
into the intra-distribution dynamics, without making it clear that the mobility
that they are studying is subtly different.

To see why the distinction is important, we need to think about what the tw
types of exercises tell us. Considering the first type of mobility, that is, in term
of city sizes relative to the mean, allows us to answer a number of interestil
guestions about the long run city size distribution. Thus, one can exami
whether the distribution has a tendency to become uniform flatteh out , |
collapse to a single point all cities converge to the same) size , or to, sa

" For example, Dobkins and loannides 110 divide the state space in terms of bounds defined
0.30, 0.50, 0.75, 1.00, 2.00, and 20.00 times the contemporaneous mean.
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become bimodal. To do this, after discretising the state space and calculat
the transition probability matrix, one would calculate the ergodic distribution c
the associated markov procdss assuming that it ¢xists . All three of the ab
mentioned papers do exactly that. Black and Hendeksbn 5 emphasize that
long run ergodic distribution is remarkably close to the current distribution.

Notice that all of these are questions about what mobility implies for th
overall shape of the distribution. These exercises also tell us about change
the rankings of cities. Take any two neighbouring discrete states. If some cit
move up from the lower state to the higher state, while others move from t
higher state to the lower state, then the rankings of those cities must he
changed. There are, however, two problems with this method of characteris
the changing rankings of cities. First, the discretisation of the state space me
that we do not observe what happens within each discrete state. Only wt
cities move between states do we get information on mobility. Second, obse
ing the movement of an individual city between states does not necessa
imply a change in rankings. This is where the second approach of Dobkins &
loannides[ 10 based on quantiles differs from the approach based or
(arbitrary fixed discretisation. For this second approach, movement of one c
up a discrete statanust be accompanied by a corresponding move down
state by another city and vice versa. Thus all movements between stz
correspond to changes in rankings. However, this second approach still suff
from the fact that we do not observe mobility and changes of rankings with
cells.

The problem of movements within cells arises because we discretize
continuous state space in order to calculate transition probability matrice
Previous attempts to characterise the intra-distribution dynamics of the city s
distribution also face two other related problems. The first is that there are
group of very large cities where mobility characteristics may be different fror
the rest of the system. Including these cities may over-emphasise the degre
persistence in the distribution. A simple solution would be to exclude tho:
cities from the sample and recalculate the transition matrices. However, t
brings us to the second problem, that the number of cities is such that we «
only discretize the state space into relatively few discrete states. For exam
Black and Henderson report results for a five-state markov process, but the
state is occupied by the very immobile largest cities, leaving four states
capture the dynamics of the remaining cities. Such a limited number of sta
may lead us to underestimate the degree of mobility. Dobkins and loannic
[10] allow for ten discrete quantile states. However, that number of states lea
very few cities in each state, and mobility may be overstated due to tl
movements of a very few cities. Finally, a large number of states for a sm
number of cities means that small changes in the discretization may lead
large changes in our estimates of the degree of persistence or mobility.
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4.1.1. Estimations Danny Quah has proposed, in a series of papers startir
with Quah[20 and including notably Qugh 23], a set of toofs for
analysing evolving distributions which avoid the need to disretize the sta
space. He suggests calculating a nonparametric estimate of the underly
continuous transition kernel. Ldt denote the density functioh distribution of
P, \, the population of cityi at time t. Let us assume that the intertemporal
evolution of f, may be described in general by

ft+l=%( ft’8t+1)’ (2)

where.# is an operator that magd,, ¢, ;) to a probability measure, and , ;

is an appropriately defined stochastic function representing random shocks, e
the random growth model in Simdn R7 may be considered as a special case
processes consistent with specification 2 . We may estimate such a law
motion for the evolution of city sizes by estimating nonparametrically the
probability distribution function of cityi population in timet + 1, conditional

on its population at time, f(P, ;| P, ). Overmarl 19, Appendix C presents

technical issues necessary to establish that stochastic kernel estimation te
nigues may be used to estimate transition, and more generally mappir
probability functions’.

We estimate stochastic kernels for the cross-sectional evolution of the ci
size distribution which mitigate some of the problems described above. Figu
2 presents nonparametrically estimated kernels for transition probabilities alo
the lines of Eq( 2 above, obtained by using the techniques developed by QL
[20]. The underlying data at time are the( logarithm of population of each
city relative to the mean city size at timte These results illuminate the extent
of mobility, as we discuss shortly below.

The specifics of the estimation of stochastic kernels are as follows. First, v
derive a nonparametric estimate of the joint distribution of the population c
city i in two successive period$(P, ,, P, ,,,), whereP,  is city i population
at time s We then numerically integrate under this joint distribution with
respect toP, ., to get the marginal distribution of population at time

8 Danny T. Quah's progransir is available at http:/econ.Ise.ac.uk ~ dqualy tsrf.html.

9 A more precise definition of the intertemporal evolution ff would be the following. Let
b(R, %) be the Banach space under the sup norm of bounded measurable functibRs.%mn.
Given a stochastic kernel, define the operatol mappingb(R, %) to itself by Vf € b(R, %),

Vy ez, (TI)y = [f(x).#(y, dx). .#(y,-) is a probability measure, and therefore the ima@ge

is the forwards conditional expectation. In our case, when the kernel is applied to city sizes in tir
t, P, ., it is the conditional distribution oP, . ;, given P, ;. For more details, sesrr Manual in
http://econ.Ise.ac.uk ~ dqualy tsrf.html.

10 All densities are calculated nonparametrically using a Gaussian Kernel with bandwidth set
per Subsection 3.4.2 of Silvermdn 126 . The range is restricted to the positive interval using t
reflection method proposed in Silverman 126 . Calculations were performed with Danny Qsrah’s r
econometric shell available from htyy‘econ.Ise.ac.ukdquaty).



CROSS-SECTIONAL URBAN EVOLUTION 553

Stochastico Kerzmel
Stochast/c Aernel

Stoch. Kernel Contour(s) Stoch. Kernel Contour(s)

T T T T T T T T T
2k j g 2r

1980

I -2 it L ko

4]
1990

FIG. 2. Selected decades transition kernels.

f(P, ). Next, we estimatef(P, ., | P, ), the distribution of population size
in a given period conditional on population size in the previous period,
dividing through f(P, , P, \, ;) by f(P, ,):

f( Pi,t' Pi,t+1)
FCP o)
Under regularity conditions, this gives us a consistent estimator for the con

tional distribution. See Rosenbldtt 25, Silvernfan] 26 , and Yakolwitg 28 f
details. The stochastic kernels plot this conditional distribution for all value

of P, .12

fA(Pi,t+1||:)i,t) = (3)

™ We could also estimate the marginal distributiofP; ) using a univariate kernel estimate.
The asymptotic statistical properties of both estimators are identical, and in practice tend to prod
very similar estimates.

12 We note that this approach admits the nonparametric conditional mean esfinate =
g(R, ) + v, as a special case, although it does not give actual numerical estimates.
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We report in Fig. 2 a selection of our results, from the periods $29Q0
and 1986:1990. To interpret the diagram, take a cross-section from any poi
on the 1910 axis, parallel to the 1920 axis. The cross-section is the distributi
of relative city sizes in 1920 conditional on the city size in 1910. For example
cutting across from zero in 1910 gives us the distribution of city sizes in 192
conditional on the city having mean size in 198@Extreme persistence would
imply that all cities of( say twice mean size in 1910, would be approximatel
twice mean size in 1920. In this case, the conditional distribution for twic
mean size cities would be very tightly centred around log 2. In contrast, r
persistence in city sizes would imply that cities(of kay twice mean size cou
occupy any point in the distribution in 1920. In this case, the conditiong
distribution for twice mean size cities would just be tke unconditional
distribution of city sizes. Thus, extreme persistence is characterised by
stochastic kernel tightly centred around the diagonal. Extreme mobility woul
be characterised by a stochastic kernel centred around zero.

Figure 2 shows that city sizes are highly persistent. Nearly all the mass
concentrated around the diagonal implying that, from decade to decade, cit
hardly move relative to the mean. This is even clearer if one looks at tt
contour plots presented in Fig. 2. These contour plots work exactly like tr
contours on a more standard map, connecting points at similar heights on
stochastic kernel. The contour plots clearly demonstrate the high degree
persistence, reflected in the concentration of the mass around the diagonal
both the beginning and end of the period.

Figure 2 shows that there is almost the same degree of mobility at both tl
beginning and end of the sample. We cannot directly test for the stationarity
the underlying markov process in our nonparametric setting, althgufghests
performed by Black and Hendersprl 5 do not reject stationarity. If so, we ce
pool across time periods to get a better estimate of the underlying transiti
process. Figure 3 shows such pooled transition kernels, for the entire U.S. &
the pooled data for regions, where each city population is taken relative to tl
regional mean.

These stochastic kernels give a pictorial representation which allows us
compare mobility across samples and time periods. They suffer from tw
problems, however. First, when estimated for smaller samples, the degree
precision is reduced, giving the appearance of more mobility. Second, they |
not give us statistics with which to compare mobility across different sample
We could discretize the state space, estimate transition matrices, and calcu
the standard mobility indicesbut then we are back to the problems with the
previous literature that we have highlighted above.

13 Recall that our underlying data are the logarithm of population of each city relative to th
mean city size at time.
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Instead, we proceed by reporting in Fig. 4 the “cross profile” plots, ¢
graphical device proposed by Dola@bal. [9] and also used by Quéh 23 . The
top left hand corner of Fig. 4 shows such a cross-profile plot for all the citie
that exist in 1920. The vertical axis is the logarithm of the city size relative t
the mean. The horizontal axis marks city rank according to size in 192
Reading upward from the bottom of the figure, the plots are for 1920, 194
1960, and 1980, respectively. For 1920, cities have been ranked in order
increasing size thus the cross-profile plot is monotone rising. We then maint:
the same horizontal ordering of cities for each of the plots in subsequent ye:
That is, the ordering of cities is fixed according to their 1920 rankings. As citie
change rankings year to year, the plots cease to be monotone rising and ins
become “jagged.” Thus, the extent of choppinéss or jaggedness depends
the degree of intra-distribution mobility. The shape of the plots gives L
information on both types of mobility that we discussed above. If the cross-pr
file plots were always monotone rising, but the slope increased over time, th
city population ranks are invariant, but the spread of the distribution
increasing. If the cross profile plot becomes jagged, then cities are chang
rankings over time.

We add precision by calculating a number of statistics which capture featul
of the changes in the distributions that we have described above. We rey
these statistics in Tables 3, 5, and 7. The first meassiepe gives the OLS
estimated slope of theesorted* cross-profile plot at each point in time, that is,

 That is, OLS is done after sorting cities according to their current ranks. This is necesss
because the smalleét largest city in 1920, is not necessarily the snfallest )largest city in I
decades.
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the slope of the regression of the logarithm of city size against its rank. B
resorting the data in each year and by comparing the respective estimates,
may capture the extent to which the spread of the distribution is changing ov
time. This gives an idea of the degree of changes in inequality in the city si:
distribution. WhenSlope has the valuev, then being 10 cities larger means
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having a populatione®®¥ times higher. For the whole sample, this measur
decreases slightly over time, but stabilizes towards the end of the period.
Additional insight on the degree of intra-distribution mobility is provided by
two new measuresSerCorr and Variation. They are intended to capture the
changing choppiness of the cross-profile plot and are defined as follows. L
(r) denote the ranking in 1920 when the cities are ordered in terms
increasing size. Thus, = 1 for the smallest cityr = 2 for the second smallest
city, etc. Then, for each periodgerCorr is the first-order serial correlation
coefficient of sequential changes across this orderingp[f is the relative
population of the city with rankr, then sequential changes are defined as th
difference in relative sizes of the cities with two successive rankings:

A* By = Py = Pr—1y- (4)

Then, SerCorr is defined as the “serial’{ along the ranking in 1920 correla-
tion coefficient,

> (A* — E[ A* A*p,. .. — E[A*
SerCorr= (& Py — E[A"PI)(A"Pe -y — El p])' 5)

T (A*p(r) — E[A*p])®

where E[A*p] is the average ofA*p,, across all rankings. As with all
correlation coefficients, the definition dberCorr ensures that it lies between
—1 and +1. If the cross-profile plot is a straight line, the®erCorr is zero
regardless of the slope of that cross-profile pfotJsually, SerCorr differs
from one, because the relative sizes do not differ uniformly across the rankir
If the cross-profile plot is monotone rising and convex, th8erCorr is
positivel® If the cross-profile plot is increasing and concave, tisarCorr will

be negative. It becomes smaller or more negative when the choppiness of
cross-profile plot increases.

The other measure of intra-distribution mobility \&riation, defined as the
mean-square variation in relative “growth rates” across two pairs of successi
rankings. In contrast, the variance sums up squared deviations from the me
and SerCorr sums up the products of deviations from the mean for all pairs «
successive rankings. That is, M is the number of cities, then

.. 1 2
Variation = ——— ;(A* Py — &Proy) - (6)

Variation is non-negative and becomes larger with increasing variance of tl
cross-profile plot. As withSerCorr, Variation is zero when the cross-profile is

5 To see this, note that the slope of the cross-profile at any point is proportiorﬁlpp) by
defmmon Thus a constant slope implie€ p,) = A*p,_,, = E[A*p].

Agam because slope of the cross-profile at any point is proportionat ®r), the convexity
implies that A* Pr) is increasing across the sample.



558 OVERMAN AND IOANNIDES

a straight line, that is, when the relative size of cities with successive rankin
are constant, regardless of the slope of the profile. However, it will be positiv
for all other cross-profile plots, regardless of whether or not they are monotor
cally increasing.

Table 3 provides these summary statistics for the cross-profile of all citie
existing in 1920. The intra-distribution dynamics for the whole sample settl
down rapidly: SerCorr has value—0.612,—0.619, and— 0.609 in 1960, 1980,
and 1990, respectively. One can see from the cross-profile that this does |
mean that the profile is actually frozen in time. Rather, the ongoing “churning’
of the distribution, that is, the changing in the rankings of cities, has character
tics that are stable. This is consistent with our earlier observation on tt
stationarity of the Markov process for city transitions. However, now we ar
directly examining the mobility properties of the entire distribution. Notice tha
Variation shows ongoing increase over time, which reflects increasing ampl
tudes of changes in relative sizes, as evidenced by the cross-profile plots in-
upper left hand corner of Fig. 4. However, the estimated slope of the cross-p
diminishes over time, implying that the relative sizes across successive rankir
decrease over time.

Our results for the cross-profile of cities that exist in 1920 suggest that tt
churning characteristics of the distribution are relatively stable over time ar
parameterised by a value &erCorraround—0.6. Both these statistics and the
estimated stochastic kernels indicate the degree of mobility that characteri
the evolution of the U.S. city size distribution. Models that seek to explain th
evolution of that distribution could use these figures as upper bound benc
marks!’ These tools can also be used to compare the mobility patterns
different groupings of cities. It is to this issue that we now turn.

17 We would argue upper bound, as the actual urban system is hit by shocks that presuma
increase mobility relative to the underlying economic mechanisms captured by current theoreti
models.

TABLE 3
Whole Sample Cross Profile Statistics

Slope SerCorr Variation
1920 0.020 0.391 0.063
1940 0.019 —0.479 0.513
1960 0.017 —-0.612 1.324
1980 0.015 —0.619 1.708

1990 0.015 —0.609 1.924
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4.2. Regional Urban Subsystems

A key issue, seldom addressed in the rank-size literature, is the appropri
definition of the urban system. Our approach allows us to characterise 1
degree of mobility within different urban subsystems. Here, we demonstrate 1
technique by considering the evolution of nine subsystems defined by the U
Census region¥ Regional analysis of the U.S. system of cities is particularly
interesting in view of U.S. economic history. Not all of the continental U.S. wa
settled at the same time, and urban development since the beginning of
twentieth century has sharp regional patterns. Note that[Kifh 14 argues that
census regions are likely to serve well as economic redibns. [Kiln 15 rela
regional economic patterns to change in cities’ industrial employment shat
and other characteristics. Table 4 provides summary statistics for the regio
urban systems.

The picture on the right hand side of Fig. 3 shows the stochastic kernel f
the evolution of city size relative to the average city size of cities in the san
region. This stochastic kernel is estimated assuming that the transition proc
is stationary over time and identical across regions. This allows us to pc
observations across both dimensions. It appears that the pattern of mobility
cities within their regional subsystems is not much different from the pattern
mobility relative to the U.S.-wide average city size. However, remember th
this result is conditional on the assumption that we can pool observations acr
both regional subsystems and across time. The results of the cross-profile p
suggest that this is not a valid assumption. In fact, there may actually
substantial differences between regional subsystems.

Figure 4 shows the cross-profile plots for eight of the nine regtdrighe
cross-profile plots are for the years 1920, 1940, 1960, and 1980 as befc
Because of the varying numbers of cities in each region the plots are hard
compare visually. However, some stark differences do immediately jump ol
For example, compare the cross-profile plots for the South Atlantic and M
Atlantic regions. Both regions have similar numbers of citfebut the transi-

8 The nine regions are New Englaid ped ; Middle Atlartic nad ; South Atldntio sad , Ea
South Central esdd ; East North Centfal encd , West North Central )wncd ; West South Cen
(wscd ; Mountain( mtdl ; Pacifi€ pad . These regions may not correspond to functional urb.
subsystems at all times during the period of study. However, they provide a convenient division t
allows us to demonstrate the general approach. Their geographic definitions are indicated on Fi

¥ Kim [15, pp. 79] discusses the original intention of the definition of U.S. regions as
delineating areas of homogeneous topography, climate, rainfall, and soil, but subject to
requirement that they not break up states. By design, the definitions were particularly suitable
agriculture and resource-based economies. The role of these industries as inputs to manufact
would make them likely to serve well as economic regions.

20 We exclude the Mountain region which only has 4 cities in 1920.

ZL A total of 24 and 21, respectively.
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TABLE 5

Sub-regions Cross Profile Statistics

Slope SerCorr Variation
East North Central
1920 0.084 0.279 0.169
1940 0.087 0.117 0.276
1960 0.085 —0.355 0.589
1980 0.083 —0.529 0.788
1990 0.085 —0.544 0.867
East South Central
1920 0.213 —0.304 0.185
1940 0.203 —-0.276 0.209
1960 0.190 —0.879 0.468
1980 0.148 —0.296 0.396
1990 0.142 —0.397 0.449
Mid Atlantic
1920 0.159 0.448 0.250
1940 0.154 0.240 0.388
1960 0.146 —0.013 0.612
1980 0.134 —0.355 0.945
1990 0.128 —-0.272 0.983
New England
1920 0.211 —0.025 0.497
1940 0.212 0.019 0.549
1960 0.241 —0.346 1.206
1980 0.219 —0.352 1.210
1990 0.226 —0.400 1.332
Pacific
1920 0.242 —0.427 0.581
1940 0.222 —0.461 1.117
1960 0.162 —0.243 1.318
1980 0.120 —-0.216 1.395
1990 0.095 —0.237 1.489
South Atlantic
1920 0.090 0.376 0.148
1940 0.082 0.048 0.329
1960 0.079 —0.254 0.882
1980 0.073 —-0.275 1.265
1990 0.074 —0.304 1.549
West North Central
1920 0.198 —-0.071 0.308
1940 0.193 —0.296 0.484
1960 0.188 —0.672 1.120
1980 0.184 —0.622 1.255
1990 0.188 —-0.671 1.579
West South Central
1920 0.120 —0.154 0.222
1940 0.134 —0.857 0.781
1960 0.148 —-0.821 1.032
1980 0.164 —0.797 1.539
1990 0.172 -0.713 1.601

561
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tion dynamics appear very different. The measures in Table 5 allow a mo
direct comparison. For example, we see that the visual impression that the N
Atlantic region shows more churning than the South Atlantic is actually drivel
by higher variation, rather than increased churning. TI8eCorr has similar
values for the two regions, bMariation is much higher for the South Atlantic.
We know that the South Atlantic has gained, in the second half of the twentie
century, larger cities relative to the Mid Atlantic. To take another example, w
see that the West South Central and West North Central regions show a hig
level of churning than all the other regions. In contrast to other U.S. region
which typically experienced roughly monotonic changes in their shares
larger cities, these two regions saw their shares increasing and then suk
guently decreasing during the study period. The cross-profile plots sugge
some evidence that there are differences in intra-distribution mobility within th
different regional subsystems. Some areas of the U.S. have urban systems
are characterised by far higher intra-distribution mobility.

4.3. City Tiers

Classical hierarchical theories of cities divide cities into tiers, depending o
the functions of each city. More recent theoretical work has incorporate
insights from this older literature in to the new economic geography literatur
These theoretical analyses suggest that the highest-tier cities, which are m
diviersified, may display different patterns of evolution from lower tier cities.
See Fujitaet al. [12] for details. In this section, we examine whether the
intra-distribution dynamics do appear to differ substantially among tiers.

In order to construct the tiers, we took as our basic classification a listing ¢
U.S. cities by “function” (nodal centeds from Knax 16 . We amended the tof
tier slightly to include Atlanta, Chicago, Denver, Houston, Los Angeles, Nev
York City, Miami, San Francisco, Seattle, and Washington, DC. The ne»
classification is the regional nodal centres, which includes 14 large citie
Baltimore, Boston, Cincinnati, Cleveland, Columbus, Dallas, Indianapolis
Kansas City, MO, Minneapolis, New Orleans, Philadelphia, Phoenix, Portlan
OR, and St. Louis. The third classification is the sub-regional nodal centre
This comprises 19 cities: Birmingham, Charlotte, Des Moines, Detroit, Hart
ford, Jackson, MS, Little Rock, Memphis, Milwaukee, Mobile, Nashville,
Oklahoma City, Omaha, Pittsburgh, Richmond, Salt Lake City, Shrevepol
Syracuse, and Tampa. The remaining cities are placed in the lowest tier. Ta
6 gives summary statistics for each tfér.

22 The time-invariant nature of this classification is particularly problematic in certain instance:
For example, despite its high population, San Diego would be in tier four in the early years, aft
having entered in 1910, but should be in a higher tier later on in the century. However, geograph
might consider San Diego as rather special, because it has functioned in a very specialized way
naval base before its more diversified growth in recent years. It is for this reason that it is in ti
four in this analysis.
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TABLE 6
Tiers
Top tier Second tier Third tier Fourth tier
No. cities
1900 9 13 19 74
1910 9 13 19 98
1920 9 14 19 107
1930 10 14 19 114
1940 10 14 19 117
1950 10 14 19 119
1960 10 14 19 167
1970 10 14 19 200
1980 10 14 19 279
1990 10 14 19 291
Mean pop.

1900 974,300 588,200 210,200 127,500
1910 1,384,000 736,400 247,600 138,400
1920 1,755,000 826,800 334,100 156,400
1930 2,168,000 988,300 449,900 180,000
1940 2,406,000 1,039,000 487,700 190,400
1950 2,975,000 1,233,000 590,400 229,800
1960 3,368,000 1,495,000 747,900 262,200
1970 3,885,000 1,795,000 872,300 294,400
1980 3,980,000 1,928,000 994,700 300,100
1990 4,526,000 2,121,000 1,084,000 332,000

From the classification, it is clear that the number of cities in the differer
tiers differs substantially between tiers. Thus the top tier comprises 10 citi
the second tier 14 cities, the third tier 19 cities and the lowest tier the remaini
291 cities. With such small numbers of cities within the top three tiers, it mak
no sense to calculate stochastic kernels for each tier. Instead, in Fig. 5 we st
the cross-profile plots for each of the four tiers. Table 7 gives the correspondi
measures.

The table shows that the top tier actually shows a surprising degree
mobility. The top tier exhibits, consistently over the century, the large:
estimated slopes, which imply that relative sizes increase with ranking
Looking at the cross-profile plot suggests that this mobility is mainly due t
changes in the relative sizes and rankings of cities at the lower end of the ti
By 1940, the rankings of the top four cities appear set, although they s
display mobility with respect to relative siz&€For the bottom five cities, there
is a surprising degree of mobility both in terms of rankings and relative size
Results for the second tier are again surprising. It is actually this second tier

2 Relative sizes are now defined with respect to the average city size for cities in the same t
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FIG. 5. Functional tiers cross profile plots.

cities that show remarkable stability, both in terms of relative size and ranking
The measures and the shape of the cross-profile plot show that this is easily
most stable subsystem that we have studied. Mobility patterns for the third ti
lie somewhere between the first and second. Finally, the fourth tier shows t
highest degree of mobility. In standard analysis using transition probabilit
matrices, nearly all the action for the top three tiers would be disguised by tt
fact that they all fall in the top discrete state. Our results here suggest that the
are interesting differences in mobility for subsystems of cities that usually fa
within this highest state.

5. CONCLUSIONS

This paper has studied a number of aspects of intra-distribution mobility fc
the U.S. city size distribution. Characterising the nature of such intra-distribt
tion mobility should help guide the two different theoretical strands that seek |
explain the evolution of urban systems. For the literature that attempts
generate urban systems that obey the rank size rule, these results proy
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TABLE 7
Functional Tiers Cross Profile Statistics

Slope SerCorr Variation
Top tier
1920 0.431 0.050 0.560
1940 0.394 —0.353 1.059
1960 0.302 —0.441 1.077
1980 0.191 —0.475 1.040
1990 0.169 —0.546 1.094
Second tier
1920 0.212 0.032 0.286
1940 0.181 —0.247 0.306
1960 0.123 —0.204 0.346
1980 0.073 —0.162 0.404
1990 0.055 —-0.191 0.497
Third tier
1920 0.150 0.360 0.243
1940 0.132 —0.025 0.465
1960 0.109 —-0.232 0.782
1980 0.082 —0.426 1.073
1990 0.073 —0.462 1.163
Fourth tier
1920 0.019 —-0.334 0.036
1940 0.017 —0.625 0.491
1960 0.012 —0.649 1.279
1980 0.010 —0.636 1.597
1990 0.010 —0.632 1.828

benchmarks for the upper level of intra-distribution mobility that would ensur
these models are consistent with real world intra-distribution dynamics. TI
results on regional subsystems and urban hierarchies also prompt question:
the literature that tries to model the economic mechanisms that may govern
evolution of urban systems. Are there economic forces that can explain t
apparent differences in the nature of intra-distribution mobility between diffe
ent regional subsystems? More interestingly, what explains different patterns
churning and changes in relative rankings within groups of cities at differe
levels of the U.S. urban hierarchy?
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