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ESTABLISHING A MULTIVARIATE SPATIAL MODEL FOR URBAN GROWTH 
PREDICTION USING MULTI-TEMPORAL IMAGES 

 

ABSTRACT:  

Landuse change in metropolitan area has largely been focused on the dynamic nature of the urban 
landuse change. Few have been reported for the integrated study on both spatial and temporal 
change pattern in urban area. In this research, a spatial statistical model was used to support 
decision-making on the urban growth prediction. This model was based on the integration of remote 
sensing, geographical information systems and multivariate mathematical models. The emphasis of 
the model was on the spatial distribution of the landuse/cover units and the spatio-temporal patterns, 
which was modelled by landuse/cover change trajectories over a series of observation years. The 
main trajectories of landuse/co ver change model were established based on the 5-time 
landuse/cover change data. Using the integrated GIS, several spatial variables were derived 
including proximity to the nearest road and built-up area. A multivariate model was established to 
model the detected urban expansion and these variables. The landuse/cover change trajectories and 
the multivariate model were then integrated to construct a spatial statistical model that is capable of 
estimating the spatial probability of the urban growth. 

Introduction 

Urban growth prediction is often based on the dynamic landuse/cover pattern and its relationship 
with selected socio-economic factors. Landuse change in metropolitan area typically reflects the 
economic development and population growth. Thus the analysis of spatio-temporal pattern on 
landuse/cover provides an objective view for the understanding of the relationship between urban 
growth and corresponding economic, population and environmental factors. 

Research has been reported on various aspects of landuse/cover change studies (Civco et al. 2002). 
The change detection between landuse/cover categories by integrating satellite imagery, 
environmental and socio-economic data has been the common approach towards the analysis of the 
dynamic pattern of urban growth (Amissah-Arthur et al. 2000, Roy and Tomar 2001, Masek et al. 
2000). Markov chain and the change matrix are widely used as the tools for the dynamic pattern 
analysis (Lo and Shipman 1990, Boerner et al. 1996). However, previous research has largely been 
focused on the dynamic nature of the urban landuse change. Few have been reported for the 
integrated study on both spatial and temporal change pattern in urban area (Yeh and Li 2001). 

From the point of view of urban studies, the spatial context of landuse/cover change in the urban 
fringe area is of particular importance since it composes critical consideration for decision-making 
in urban landuse (Reenberg and Fog 1995). Urban growth prediction based on objective 
spatio-temporal models is therefore a fundamental component for the management and planning of 
a metropolitan area. 

In this research, a spatial statistical model was used to support decision-making on the urban growth 
prediction. This model was based on the integration of remote sensing, geographical information 
systems and multivariate mathematical models. The emphasis of the model was on the spatial 
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distribution of the landuse/cover units and the spatio-temporal patterns, which was modelled by 
landuse/cover change trajectories over a series of observation years. 

This paper reports the methodology for predicting spatial pattern of urban expansion by analysing 
landuse change trajectories and stimulating factors such as transportation lines (highways and 
roads). An urban expansion prediction model has been established based on the development of 
multivariate spatial model that considers three categories of spatial variables, namely: 

1. Landuse/cover change trajectories derived by analysing multitemporal remote sensing 
images, 

2. Proximity to transportation lines, and 

3. Proximity to the existing (or established) urban centres. 

Based on the multivariate spatial model, the areas with high probabilities of urban growth can be 
mapped so that their spatial distribution can be analysed. 

Study Area and Data 

This study was undertaken at Chao yang District, one of the fastest growing districts of Beijing 
metropolitan area. The district is located in the eastern part of Beijing and covers an area of 455 
km2, with a population o ver 1.3 million – the most populous of all districts in Beijing. The majority 
part of the district  is characterised as  urban fringe with rapid urban expansion in the past two 
decades. Since 1978, the area of agricultural  land decreased sharply – by 18.8% from 1982 to 1989 
and 6.5% from 1989 to 1992. The residential and industrial land, on the other hand, increased about 
28.2% from 1982 to 1989 and 14.9% from 1989 to 1992 (Cao and Cai 1993). 

Landsat TM images were acquired on 2 October 1984, 21 April  1988, 6 May 1991, 28 August 1994 
and 16 May 1997. In addition, t he landuse map, compiled in 1991 based on field survey at the scale  
of 1:50 ,000 was used for the accuracy assessment. The master scene (1991) was geometrically 
corrected and registered to the landuse map, using 36 Ground Control Points (GCP) and 
second-order polynomial transformation with nearest neighbour resempling. The other scenes were 
then registered to the master scene by image-to-image registration. 

Methodology 

The methodology that we employed for this study is composed of three components, namely: 

• Landuse/cover change trajectory analysis which derives the probability of landuse 
transformation from various landuse categories to urban landuse, 

• Spatial proximity analysis  which derives the probability of urban growth in relation to 
distance to transportation and existing built-up areas, and 

• Establishment of multivariate spatial model to predict urban growth which integrates the 
above derived variables to derive overall probability of urban expansion for each given 
location in the study area. 



 3 

Landuse/cover change trajectory analysis 

A time series of remote sensing images (Landsat TM), spanning 17 years were used to get landuse 
change information, by employing post-classification comparison technique (Lillesand and Kiefer, 
2000). 

Landuse classification: Two classifiers were tested in this study, namely, the maximum likelihood  
(MLC) and artificial neural network (NNC) classifiers. One major difference between the two 
classifiers is the number and purity requirement on the training areas (Atkinson and Tatnall 1997, 
Kanellopoulos and Wilkinson 1997). The NNC needs fewer and less pure seeding data in 
comparison to that of MLC. 

PCI 6.0 remote sensing image processing software was used for the classification. 4835 pixels were 
selected as the training data on the 1991 TM image. The BP model of NNC was applied in the 
classification, with a structure of 6, 32 and 7 that refers to input, nods number and output, 
respectively. After classification, the post process was applied to both results from MLC and NNC 
to aggregate classified categories in order to match those of the landuse map. Five land-cover 
classes were mapped, namely, water, vegetable garden, forest, farmland, and built-up area. 

The one-time classification error matrix was constructed for the land-cover classification on the 
1991 image with the 1991 landuse map as the reference data. With an overall accuracy of 79.6% 
(3% higher than that of MLC) and a kappa coefficient of 0.696, NNC was chosen as the preferred 
classifier. The rest four multitemporal images were then classified using NNC. Together with the 
1991 images, the five multitemporal classified images were used to establish the land-cover change 
trajectory for each pixel from 1984 to 1997. 

Landuse change analysis: Changes in landuse between the successive dates were detected by 
post-classification comparison. The post-classification comparison leads to a categorical map that 
indicates the landuse classes at the two successive observation years for every pixel. The traditional 
post-classification cross-tabulation (Lunetta and Elvidge 1999) was employed to establish “from” 
and “to” categories of the two dates of the images, which was essential for the definition of landuse 
change trajectories. 

Trajectories of landuse change: The spatio -temporal landuse shifting pattern has been an active 
research field of landuse change detection (Roy and Tomar 2001, Weng 2001). From the point of 
view of change detection, the change trajectory was defined as trends over time among the 
relationships between the factors that shape the changing nature of human-environment relations 
and their effects within a particular region (Kasperson et al. 1995). The trajectory of land-cover 
change refers to successions of land-cover types for a given sampling unit over more than two 
observations (Mertens and Lambin 2000, Petit et al. 2001). Markov chain and the change matrix 
could be used to analyse the possibility of landuse shift and to definite the trajectories, but they 
would not be applicable to get the real trajectory of a given location when the observation time 
series becomes long. To establish the trajectory of landuse change, we have selected numerous 
sample points over the study area and recorded for each sample point the landuse category at every 
image date. 

In urban fringe area, the primary landuse change is urban growth. Among all possible landuse 
change trajectories, the sequences were focused on the other landuse categories turning into built-up 
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area at the end of monitor period. 

The popularity of various landuse change trajectories determines the probabilities of transforming to 
built-up areas from other landuse categories. The spatial variable is defined as cover type 
conversion probability (C) and used to describe spatial pattern of urban expansion in the 
multivariate spatial model for urban expansion prediction. 

Spatial proximity analysis 

Spatial proximity analysis derives the probability of urban growth in relation to distance to 
transportation and existing urban centers. In this study, we have utilized two categories of variables 
for the proximity analysis, namely, the distance between urban expansion areas to transportation 
lines and to existing built-up areas. 

The distance between urban expansion areas to transportation lines: In order to analyze the 
influence of the transportation lines (e.g. highways) on the urban expansion, we set the variables Kn 
and Ks, which specify the relationship between transportation and urban expansion area by number 
count and area, respectively. To compute K, we firstly created a series of buffer zones to the 
transportation lines ranging from 50m, with an increment  of 50m, to the maximum increments m (in 
this study we set m = 10). The variable K for ith buffer zone (e.g. i = 1 means the first 50m buffer 
and i = 2 means the second 100m buffer) can then be derived as: 

%100×=
N
n

Kn i
i  i = 1, 2, …, m (1) 

and %100×=
S
s

Ks i
i  (2) 

where n and s  denote the number count and area of urban expansion areas (i.e. “clumps” of pixels 
identified as shifted from other landuse types to “built-up area”), and N and S  denote the total 
number count and area of urban expansion areas in one observation period, respectively. 

The distance between urban expansion areas to existing built-up areas: The variable Ka  was defined 
to describe the proximity of the urban expansion areas to existing built-up areas that could be 
considered as the urban growth origins (e.g. old city). Buffer zones were created from 100m with an 
incremental distance of 25m to the existing built-up areas. The variable Ka  can then be computed in 
the similar way as above: 

%100×=
S
a

Ka i
i  i = 1, 2, …, m (3) 

where a i denotes the expansion area within the ith buffer zone to the existing built-up areas. 

The incremental change within each buffer zone can be computed as: 

iii KKK −=∆ +1 , i = 1, 2, …, m-1 (4) 
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where ∆K i denotes the change of K (Kn, Ks or Ka) within the ith incremental buffer zone. 

During a given monitoring period t, there is Dt, which is defined as the buffer width with the 
maximum ∆Ki value. The Dt identifies the zone where the urban growth is most likely to happen at 
the given period, while ∆Ki defines the probability of urban growth for the ith buffer zone. 

Establishment of multivariate spatial model to predict urban growth 

The multivariate spatial model integrates various spatial variables to derive overall probability of 
urban expansion for each given location in the study area. It is based on four spatial variables: the 
above Kn , Ks and Ka , and the probability of various landuse change trajectories. The model is 
implemented in GIS with each spatial variable represented as a data layer. The weighting factor can 
then be determined by specifying given scenario based on a pre-determined urban expansion pattern 
(e.g. transportation dominating pattern). 

To predict the spatial pattern of urban growth, the above multivariate model is applied to derive 
landuse transformation index to “built-up area” at a given location. The variables were weighted 
based on their influence on urban growth and they were then overlaid to derive the weighted sum at 
a given location. The result was then classified into classes to produce the map showing the 
likelihood of urban growth for the urban fringe region. The urban growth index (P) can be 
expressed as: 

∑
+++

=
ω

ωωωω KaKsKnC
P asnc  (5) 

Where ω denotes the weighting factor applied to a given variable. 

Results and discussion 

 Landuse change analysis 

During the entire study period from 1984 to 1997, the built-up area expanded from 26.7% to 55.9% 
of the total district – doubled in 14 years. On the other hand, the proportion of farmland and 
vegetable garden decreased from 51.1% and 15.5% to 26.3% and 6.7%, respectively. Forest area 
decreased slightly but the area of water bodies increased sharply – mainly due to the increase of 
commercial fish ponds in the district (table 1). By integrating the multitemporal classified images, 
we derived urban expansion map shown as figure 1. 

(Insert Table 1 here) 

(Insert Figure1 here) 

The trajectories of landuse change 

The trajectories of landuse change were analyzed using 3171 samples that were randomly selected 
over the district. Among the total samples, 939 samples indicate landuse change from other 
categories to built-up areas, showing 17 trajectories of landuse change. Among those trajectories, 
43.7% were from vegetation garden to built-up area, 52.6% from farmland, and 3.8% from water 
(Table 2). 
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(Insert Table2. here) 

The proximity to the transportation lines 

Table 3 and table 4 show the results of ∆Ki calculated by urban expansion number and area 
respectively. Considering the number of newly converted built-up area, Dt shifted from the range of 
150-200m to 50-100m in late 1980’s. While considering the area, it continued shifting from close 
range of 50-100m to 250-300m (the bold numbers in the tables are the maximum ∆Ki for each 
period). By observing the tables, it appears that differences of ∆Ki between buffer zones were not 
great until the distance reached beyond 350m. There was also a tendency that proximity to 
transportation played a less important role than it was at early stage (e.g. 1984-1988). The 
normalised ∆K i values were computed for input to Equation 5. 

(Insert Table 3 here) 

(Insert Table 4 here)  

The proximity to the existing built-up areas 

∆Ka  for each buffer zone was computed in the same way as that for ∆Ki and then the Ka  value for 
each township was also computed using area weighted ∆Ka values within the township. The result 
shows that Dt for Ka occurred in the 125m buffer zone (figure 2), in which all townships yielded Ka  
greater than 60% with a majority of greater than 80% (table 5). This clearly shows the strong trend 
that urban growth of the District most likely occurred next to the existing built-up areas. The spatial 
distribution of Ka also demonstrated the tendency showing that higher growt h rate tends to be 
associate with townships with closer proximity to the city center (figure 2). 

(Insert Table 5 here) 

(Insert Figure 2 here) 

(Insert Figure 3 here) 

Urban growth prediction 

In this study, the urban growth index (P) has been computed with all weighting coefficients set to 1 
(i.e. ωc = ωn  = ωs =  ωa = 1). In order to assess the prediction result, we have tested the model on 
1984 image to predict urban growth probability. The resulting P values were then classified into 
three classes by selecting threshold values. On the 1988 landuse classification, the prediction results 
were tested showing that 100% Class I areas were transformed to built-up areas, and most of Class 
II areas were transformed as well, except the south part of the region (e.g. Xiao Hong Men 
township). For most Class III areas, the landuse categories were not transformed, except some 
farmlands in outskirt of the urban fringe region. 

Based on the findings of the test, we have processed data using 1997 image and computed the P 
value. The result has been classified using the threshold P values of < 50%, 50 – 60% and > 60% 
corresponding to Class I, II and III shown on the urban growth prediction map (figure 4), 
respectively. Figure 4 shows the probability classes of urban expansion, on which the spatial pattern 
of the influence by existing built-up areas and major transportation lines has clearly shown. We 
predict that Class I areas would be most likely to be transformed into built-up area prior to the areas 
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of other two classes and the rest unclassified area, though Class II areas might also present 
likelihood for such transformation. 

 (Insert Figure 4 here) 

Conclusion 

In this study, we have developed a multivariate spatial model, which integrates spatial variables 
including landuse trajectory, proximity to transportation lines and existing built-up areas, to assess 
the probability of urban growth indicated by the land cover transformation to built-up areas. This 
allows prediction of future urban growth in the urban fringe region so that to assist decision making 
for the management of such region. 

The case study was undertaken in Chaoyang District of Beijing. Landsat TM images acquired in the 
years of 1984, 1988, 1991, 1994 and 1997 were used for change detection during the study period 
from 1984 to 1997 using of post-classification comparison method. The main trajectories of landuse 
change model were established based on these 5-time landuse data. There were 17 trajectories of 
landuse change related to the transformation to built-up area. Among the trajectories, 43.7% were 
transformed from vegetation garden, 52.6% farmland, and 3.8% from water.  

The urban growth prediction model was then implemented using variables including the landuse 
trajectory, proximity to transportation lines and built-up areas. The resulting urban growth index (P), 
which is specified as probability of landuse transformation to built-up areas, was then classified and 
mapped to show the areas where landuse transformation to built-up areas would most likely occur. 

This study has shown a promising approach to model urban growth based on multi-temporal 
remotely sensed imagery. Although the accuracy of the model is yet to be proved based on more 
detailed accuracy analysis methods and data, and it is still questionable whether the selected spatial 
variables and parameters are suitable and adequate for predicting the urban growth, the study has 
nevertheless demonstrated a practical technical methodology which can be further fine-tuned to fit 
into different urban growth patterns in future applications. 

Future studies will further investigate the impacts and interactions of spatial variables on urban 
growth patterns. Suitable methodology to quantify socio-economic factors that may also play 
important roles in urban growth should also be studied and adopted in the multivariate spatial model. 
Appropriate and practical methodologies for accuracy assessment for multi-temporal landuse 
change trajectory analysis should also be further studied. 
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Table 1.  The percentage of landuse categories for each image acquisition date. 

Image date Built-up area Farmland Forest Vegetable garden Water 

1984 26.7  51.1 3.7 15.5 3.0  

1988 39.8  39.9 2.7 10.7 6.8  
1991 46.0  34.9 2.7 8.2  8.2  
1994 49.9  32.0 3.0 6.9  8.3  
1997 55.9  26.3 2.9 6.7  8.2  

 

Table 2. The trajectories of landuse change. 

Trajectory Number 1984 1988 1991 1994 1997 %

1 Others Others Water Water è Build 0.5
2 Others Others Water è Build Build 1.3
3 Water è Build Build Build Build 1.1
4 Water Water Water è Build Build 0.9
5 Vege. è Build Build Build Build 23.3
6 Vege. Vege. è Build Build Build 5.2
7 Vege. Vege. Vege. è Build Build 3.8
8 Vege. Vege. Vege. Vege. è Build 3.4
9 Farm Vege. è Build Build Build 2.0
10 Farm Vege. Vege. è Build Build 1.9
11 Farm Vege. Vege. Vege. è Build 1.1
12 Farm Farm Farm Vege. è Build 3.0
13 Vege. Farm è Build Build Build 1.1
14 Farm è Build Build Build Build 27.7
15 Farm Farm è Build Build Build 6.6
16 Farm Farm Farm è Build Build 6.4
17 Farm Farm Farm Farm è Build 10.8

The arrow (è) symbols show when the landuse transformation has happened from other landuse 
types to built-up areas. 
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Table 3. ∆Ki (by number count) values for different buffer zones to transportation lines. 

1984- 1988 1988- 1991 1991- 1994 1994- 1997 Buffer 
zone ∆Ki normalised ∆Ki normalised ∆Ki normalised ∆Ki normalised 
50-100m 8.5 15.0 7.8 13.7 8.6 15.2 8.4 14.9 

100-150m 8.3 14.7 7.2 12.6 6.8 12.1 6.2 11.0 
150-200m 8.8 15.6 6.5 11.4 7.9 14.0 8.1 14.4 
200-250m 5.7 10.1 7.5 13.2 6.4 11.3 8.0 14.2 
250-300m 6.4 11.3 6.5 11.4 6.1 10.8 4.8 8.5 
300-350m 5.8 10.3 5.8 10.2 6.9 12.2 6.9 12.3 
350-400m 5.6 9.9 4.4 7.7 6.4 11.3 4.3 7.7 
400-450m 4.7 8.3 6.5 11.4 4.5 8.0 5.1 9.1 
450-500m 2.7 4.8 4.8 8.4 2.8 5.0 4.4 7.8 

Dt (m) 150-200 50-100 50-100 50-100 

 

 

 

 

Table 4. ∆Ki (by area) values for different buffer zones to transportation lines. 

 

1984- 1988 1988- 1991 1991- 1994 1994- 1997 Buffer zone 
∆Ki normalised ∆Ki normalised ∆Ki normalised ∆Ki normalised 

50-100m 10.2 18.0  5.6 10.2 6.4  11.2 7 13.4 
100-150m 9.3 16.4  8.1 14.8 6.8  11.9 5.4 10.4 
150-200m 8.9 15.7  4.9 8.9 8.5  14.9 4.1 7.9 
200-250m 3.7 6.5  7.3 13.3 6.9  12.1 6.2 11.9 
250-300m 7.3 12.9  5.6 10.2 11.4 20.0 9.1 17.5 
300-350m 4.8 8.5  7.4 13.5 5.3  9.3 7.9 15.2 
350-400m 5.2 9.2  3.5 6.4 5 8.8 4.3 8.3 
400-450m 4.7 8.3  8.1 14.8 3.9  6.8 4.5 8.6 
450-500m 2.6 4.6  4.4 8.0 2.8  4.9 3.6 6.9 

Dt (m) 50-100 100-150 250-300 250-300 
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Table 5. Ka values for each township at 125m (Dt value) buffer zone to existing built-up areas. 

Township 1984- 1988 1988- 1991 1991- 1994 1994- 1997 
Xiao Hong Men 71.8 77.8 87.0 81.0 
Shi Bali Dian 75.5 90.1 100.0 93.1 
Nan Muo Fang 91.5 95.8 96.9 100.0 
Wang Si Ying 91.8 89.3 97.1 94.7 
Gao Bei Dian 87.5 91.2 100.0 97.7 
Jiang Tai 65.2 92.9 96.4 90.6 
Ping Fang 73.7 87.7 94.7 96.2 
Dong Ba 38.6 86.3 94.4 88.5 
Lou Zi Zhuang 47.4 58.8 73.0 82.4 
Jing Zhan 41.7 36.6 85.0 66.7 
Lai Guang Ying 76.7 93.4 89.5 81.1 
Tai Yang Gong 96.9 92.3 100.0 100.0 
Da Tun 82.8 87.5 100.0 93.8 
Wa Li 68.4 84.8 100.0 91.8 
Shuang Qing 78.7 89.9 92.8 94.3 
Dong Ba 46.7 72.1 76.7 72.1 
Dong Feng 87.2 90.0 95.5 96.9 
Average 71.9  83.3  92.9 89.4 
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Figure Captions 

Figure.1. Urban expansion map from 1984 to 1997. 

Figure 2. Ka  values decrease with increasing distance to built-up areas. 

Figure 3. Distribution of Ka  within 125m buffer zone in Chaoyang District of Beijing (1997). 

Figure 4. The map of probability of urban growth prediction (1984). 
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Figure.1. 

 

 

 

 



 14 

 

Figure 2. 
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Figure 3 
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Figure 4. 

 

 

 


