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Crossover from Scale-Free to Spatial Networks
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In many networks such as transportation or communication networks, distance is certainly a
relevant parameter. In addition, real-world examples suggest that when long-range links are existing,
they usually connect to hubs-the well connected nodes. We analyze a simple model which combine
both these ingredients—preferential attachment and distance selection characterized by a typical
finite ‘interaction range’. We study the crossover from the scale-free to the ‘spatial’ network as
the interaction range decreases and we propose scaling forms for different quantities describing the
network. In particular, when the distance effect is important (i) the connectivity distribution has a
cut-off depending on the node density, (ii) the clustering coefficient is very high, and (iii) we observe
a positive maximum in the degree correlation (assortativity) which numerical value is in agreement
with empirical measurements. More generally, these results show that the cost of links induces high
clustering and positive assortativity which are non trivial features observed in many examples such
as social networks.

PACS numbers: 89.75.-k, 89.75.Hc, 05.40 -a, 89.75.Fb, 87.23.Ge

Even if some networks are defined without any refer-
ence to an embedding space, it is not the case for most
real-world networks. Most people have their friends and
relatives in their neighborhood, transportation networks
depend obviously on distance, many communication net-
works devices have short radio range [1,2], and the spread
of contagious diseases is not uniform across territories.
A particularly important example of such a spatial net-
work is the Internet which is defined as a set or routers
linked by physical cables with different lengths and la-
tency times [3]. From these examples, it appears im-
portant to define a realistic model in which nodes and
links are embedded in a physical space which induces a
distance between nodes, and we will designate these net-
works as ‘spatial’. More generally, the distance could
be another parameter such as a social distance measured
by salary, socio-professional category differences, or any
quantity which measures the cost associated with the link
formation. If the cost of a long-range link is high, most of
the connections starting from a given node will link to the
nearest neighbors. When a long-range link is existing, it
will usually connect to a well-connected node—that is, a
hub. This is for instance the case for airlines: Short con-
nections go to small airports while long connections point
preferably to big airport (ie. well connected nodes). This
propensity to link to an already well connected node has
been coined preferential attachment [4,5]: The probabil-
ity to link to a node is proportional to the connectivity
of it. It is widely accepted that preferential attachment
is the probable explanation for the power-law distribu-
tion seen in many networks [5]. However, even if this
process generates reasonably realistic networks, it misses
the important element of the cost of links. We will study
a simple model which incorporates such a cost with a
typical scale rc.

Several models including distance were previously pro-
posed [6–13] but the case of preferential attachment with
a finite scale rc was not considered before and more gen-
erally, the study of the interplay between preferential
attachment and distance effects is still lacking. In this
Letter, we study this interplay and we demonstrate the
existence of a crossover from the scale-free network to
the spatial network when the interaction range decreases.
In particular, we propose scaling forms for the different
quantities which characterize the network.

The nodes of the network are supposed to be in a d-
dimensional space and we will assume that they are dis-
tributed randomly in space with uniform density ρ. One
could use other distributions: For instance in cities the
density decreases exponentially from the center [14]. The
case of randomly distributed points is interesting since on
average it preserves natural symmetries such as transla-
tional and rotational invariance in contrast with lattices.
For the sake of simplicity, we will choose for our numerical
simulations the two-dimensional plane and the Euclidean
distance. Once the nodes are distributed in this space,
we have to construct the links and we use the following
algorithm: (1) Select at random a subset of n0 initial
active nodes. (2) Take an inactive node i at random an
connect it with an active node j with probability (up to
a normalization factor)

pi→j ∝ Z(kj)

∆(dij)
(1)

where kj is the connectivity of node j, dij is the distance
between nodes i and j, and Z and ∆ are given functions.
Finally (3), make the node i active and go back to (2)
until all nodes are active. For each node, we repeat m
times these steps (1−3) so that the average connectivity
will be 〈k〉 = 2m (numerically we choose m = 3). There
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are essentially three different interesting cases: (i) Pref-

erential attachment: When Z(k) = k+1, and ∆ = const.,
we recover the usual preferential attachment problem [5]:
The connectivity distribution is a power law with expo-
nent γ = 3, the shortest path ` is growing with system
size N as ` ∼ log N , the assortativity is decreasing as
log2 N/N [15], and the clustering coefficient is decreas-
ing as 1/N [16]. (ii) Distance selection: In this case
Z = const.: There is a distance effect only [2,9–11]. Jost
and Joy [11] studied different functions ∆(d), Dall and
Christensen [9] studied graphs in which each vertex is
randomly located and connected with its adjacent points,
while in [10], the authors study a (small-world) network
constructed from re-wiring links with a probability that
decreases as a power-law with distance. (iii) Preferential

attachment and distance selection: It is the case where
Z(k) = k + 1 and ∆ is a increasing function of the dis-
tance. In most cases—such as transportation networks
or social interactions—the range of interaction is limited,
which is explained by the fact that there is a cost asso-
ciated to long range links. Up to our knowledge, studies
done so far in this case were concerned with the case
where ∆ decreases as a power-law [12,13,6]. The main
result is then the existence of different regimes according
to the value of the exponent describing the spatial decay
of ∆. In contrast, in this Letter we will study the finite-
range case for which the function ∆ is negligible above a
finite scale rc, a prototype being the exponential function

∆(d) = ed/rc (2)

Even if there is some controversy on the spatial decay of
the linking probability for Internet cables [3,6], it seems
that the range is relatively short and that when a new
server (or router) adds to the network, it will connect
preferably to the nearest node(s). One of the most impor-
tant model of Internet topology relying on this argument
and using Equ. (2) is the Waxman topology generator
[17] and the model considered here thus appears has the
natural generalization of the Waxman case.

When the interaction range is of the order of the sys-
tem size (or larger), we expect the distance to be irrele-
vant and the obtained network will be scale-free. In con-
trast, when the interaction range is small compared to the
system size, we expect new properties and we would like
to understand the crossover between these two regimes as
well as the scaling for the different quantities describing
the network.

Probability distribution. We did simulations for this
model and as expected, when η ≡ rc/L is larger than
one, the distance selection is in-operant and we recover
the usual scale-free network obtained by preferential at-
tachment. In particular, the probability distribution is
a power law with exponent γ = 3 independently of the
actual value of η (see Fig. 1(a)). In the opposite situation
η � 1, the distance is relevant and we expect a cut-off in
the (1 minus the) cumulative connectivity distribution

F (k) ∼ k−γ+1f(
k

kc
) (3)

where kc is the cut-off at large connectivity: f(x � 1) '
0. In this problem, we have two dimension-less param-
eters: The number of nodes N and η. Our guess—a
posteriori verified—is that the control parameter is the
average number of points present in a sphere of radius rc

(and of volume Vd(rc)) as given by n = ρVd(rc). We thus
propose the following scaling ansatz valid for η � 1 for
the cut-off

kc ∼ nβ (4)

In order to test these assumptions, we first plot the cu-
mulative distribution for different values of N , rc and
L for d = 2 (see Fig. 1b). We then use our scaling
ansätze (3),(4) and we indeed obtain a good data col-
lapse (Fig. 1c) with β ' 0.13. According to these results,
the distance effect limits the choice of available connec-
tions thereby limiting the connectivity distribution for
large values.

Clustering coefficient. The clustering coefficient C for
the scale-free network is small and decreases as 1/N . In
contrast, when the distance effect is important we expect
a higher cluster coefficient. Indeed, if two given nodes i
and j are connected it means that the distance dij is less
or of the order of rc. In the process of adding links, if
a new node k links to i, it means also that dki < rc.
This implies that j and k belongs to the disk of center
i and of radius rc. The probability that k and j will
link will depend on the distance djk. When we can ne-
glect the preferential attachment and if we suppose that
a given node is connected to all its neighbors, the prob-
ability that k is also linked to node j is given in terms
of the area of the intersection of the the two spheres of
radius rc centered on i and j respectively. This is a sim-
ple calculation done in [9] and predicts that for d = 2
the clustering coefficient is C0 = 1− 3

√
3/4π ' 0.59. We

expect to recover this limit for η → 0 and for an average
connectivity 〈k〉 = 6 which is a well-known result in ran-
dom geometry [18]. If η is not too small, the preferential
attachment is important and induces some dependence
of the clustering coefficient on N . In addition, we expect
that C will be lower than C0 since in our model the links
don’t connect necessarily to the nearest neighbors. We
first plot C versus the number of nodes N for different
values of η (Fig. 2a). The same data versus n (Fig. 2b)
fall nicely on the same curve which is a decreasing func-
tion. In order to understand this variation, we consider
one given node i0. When n is above 1 and increasing,
the number of neighbors of the node i0 will increase and
the probability that two of them will be linked is thus
decreasing which explains the monotonic decay of C(n).

Diameter. An important characterization of a network
is its diameter ` [19]: It is the shortest path between two
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nodes averaged over all pairs of nodes and counts the
number of hops between two points.

We propose the following scaling ansatz which describe
the crossover from a spatial to a scale-free network

`(N, η) = [N∗(η)]αΦ

[

N

N∗(η)

]

(5)

with Φ(x � 1) ∼ xα and Φ(x � 1) ∼ log x. The typical
size N∗ is depending on η and its behavior is a priori com-
plex. However, we can find its behavior in two extreme
cases. For η � 1, space is irrelevant and

N∗(η � 1) ∼ N0 (6)

where N0 is a finite constant. When η � 1, the exis-
tence of long-range links will determine the behavior of
`. If we denote by a = 1/ρ1/d the typical inter-node dis-
tance, we have to distinguish two regimes: If rc � a then
long-range links cannot exist and therefore N � N∗. If
rc � a, long-range links can exist and we are in a small-
world regime N � N∗. This argument implies that N∗

is such that rc ∼ a which in turn implies

N∗(η � 1) ∼ 1

ηd
(7)

In Fig. 3, we use the ansatz Equ. (5) together with the
results Equ. (6), (7). The data are collapsing onto a sin-
gle curve showing the validity of our scaling ansatz. This
data collapse is obtained for α ' 0.32 and N0 ' 45.0 (for
d = 2). The scale-free network is a ‘small’ world: the di-
ameter is growing with the number of points as ` ∼ log N .
In the opposite case of the spatial network with a small
interaction range, the network is much larger: To go
from a point A to a point B, we essentially have to pass
through all points in between and the behavior of this
network is much that of a lattice with ` ∼ Nα, although
the diameter is here smaller probably due to the exis-
tence of some rare longer links (in the case of a lattice
α = 1/d).

Assortativity. Finally, we compute the assortativity of
the network which measures the correlation between the
degree of the nodes. In this case, one way to measure
this correlation is the Pearson correlation coefficient of
the degrees at either ends of an edge [20]. This quantity
varies from −1 (disassortative network) to 1 (perfectly
assortative network) and is decreasing towards zero as
log2 N/N for the scale-free network. In the case η � 1,
we plot in Fig. 4a the assortativity coefficient versus N
and then versus n (Fig. 4b). The data fall onto a single
curve and exhibit a maximum for n ' 0.1 where the net-
work is also very clustered. In addition, this maximum
is positive which indicates that the hubs are connected
and not dispersed in the network. For very small n, the
connectivity does not fluctuate and r ' 0 while for large
n preferential attachment dominates and r is also small.

This could be a possible explanation for the maximum
observed in the intermediate regime where distance selec-
tion and preferential attachment coexist. It is interesting
to note that the value of the maximum (rmax ' 0.2) is
in agreement with the empirical measurements for dif-
ferent networks [21] which give r ∈ [0.20, 0.363]. The
cost of links thus induces positive correlations and could
provide a simple explanation to the positive assortativ-
ity observed in social networks (actors, collaboration, or
co-authorship). This fact is also very important from the
point of view of the resilience of the network since it is
very sensitive to the degree correlation [21]. In particu-
lar, for the scale-free network, deleting hubs when r > 0
is not as efficient when r ' 0 or r < 0 [22]. This means
that for this type of networks, one has to adapt the best
attack strategy to the value of the density.

In summary, our results demonstrate the general im-
portance of a cost in the formation of networks which in-
duces a dependence of all quantities on the node density.
This phenomenon also provides a simple explanation to
the large clustering coefficient and the positive correla-
tions between node degrees as it is observed in some cases
such as social networks.
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FIG. 1. (a) Connectivity probability distribution for η = 10
and η = 100 (and for N = 105). The line is power law fit with
γ = 3. (b) Cumulative distribution function for different val-
ues of N going from N = 103 to 105 and for η going from
5.10−3 to 0.01. (c) Data collapse for the same data of figure
(b) with kc ∼ nβ with β ' 0.13.
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FIG. 2. (a) Clustering coefficient versus N for different val-
ues of η < 1. (b) Same data as for (a) but versus the mean
number n = ρπr2

c of points in the disk of radius rc (plotted
in Log-Lin). The dashed line corresponds to the theoretical
value C0 computed when a vertex connects to its adjacent
neighbors without preferential attachment [9].
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FIG. 3. Data collapse (in Log-Log) for `(N, η) using our
scaling ansatz Equ. (5) together with Equs. (6), (7). The data
collapse is obtained with 14 curves for η going from 1/500 to
100 and for N up to 105. The first part of the scaling func-
tion exhibits a power law behavior with exponent α ' 0.32,
followed by a logarithmic behavior for N/N∗

� 1.
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FIG. 4. (a) Assortativity versus N for different values of
η from 1/300 to 1/10. (b) Same results as in (a) but plot-
ted versus the number n (and in Log-Lin). This plot shows
clearly a positive maximum for n ' 1. Around this maxi-
mum, the network will be resilient even to a targeted attack
against hubs.
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