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3 Equipe Réseaux, Savoirs & Territoires

Ecole normale supérieure, 75005 Paris, France

(December 4, 2002)

The Internet is a complex network of interconnected routers and the existence of collective be-
havior such as congestion suggests that the correlations between different connections play a crucial
role. It is thus critical to measure and quantify these correlations. We use methods of random
matrix theory (RMT) to analyze the cross-correlation matrix C of information flow changes of 650
connections between 26 routers of the French scientific network ‘Renater’. We find that C has the
universal properties of the Gaussian orthogonal ensemble of random matrices: The distribution of
eigenvalues—up to a rescaling which exhibits a typical correlation time of the order 10 minutes—and
the spacing distribution follows the predictions of RMT. There are some deviations for large eigen-
values which contain network-specific information and which identify genuine correlations between
connections. The study of the most correlated connections reveal the existence of ‘active centers’
which are exchanging information with a large number of routers thereby inducing correlations be-
tween the corresponding connections. These strong correlations could be a reason for the observed
self-similarity in the WWW traffic.

PACS numbers: 02.50 -r, 05.45.Tp, 84.40.Ua, 87.23.Ge

I. INTRODUCTION

Internet connects different routers and servers using
different operating systems and transport protocols. This
intrinsic heterogeneity of the network added to the unpre-
dictability of human practices [1] make the Internet in-
herently unreliable and its traffic complex [2,3,4,5,6]. Re-
cently, there has been major advances in our understand-
ing of the generic aspects of the Internet [7,8,9,10] and
web [11,12,13,14,15,16] structure and development, re-
vealing that these networks can exhibit emergent collec-
tive behavior characterized by scaling. Concerning data
transport, most of the studies focus on properties at short
time scales (usually < 1 min) or at the level of individual
connections [2,17,18]. In particular, it has been shown
that for wide- and local-area networks the self-similarity
(for time correlations) applies. Possible reasons for this
behavior were shown to be [17] the underlying distribu-
tion of WWW documents, the effects of user ‘think time’,
and the addition of many such transfers.

Studies on statistical flow properties at a large scale
[3,4,6,19] concentrate essentially on the phase transition
from a ‘fluid’ regime to a ‘congested’ one for which the av-
erage packet travel time is very large [20]. The existence
of such a collective behavior indicates the importance of
spatial correlations between connections at a large scale
in the system. In order to be able to understand and
to model the traffic in the network, it is thus important
to measure and to quantify the correlations between the

flows in different connections.
In this paper, we analyze the correlations between dif-

ferent connections of a wide area network which is the
French scientific network ‘Renater’. We use random ma-
trix theory (RMT) to study the corresponding empirical
correlation matrix. RMT has been developed in the fifties
for studying complex energy levels of heavy nuclei [21]
and more recently it has also been used in the study of
correlations of stocks [22,23] or statistics of atmospheric
correlations [25].

We first demonstrate the validity of the universal pre-
dictions of RMT for the eigenvalue statistics of the cross-
correlation matrix. However, we observe some deviations
compared to the minimal hypothesis of random indepen-
dent time-series. These deviations from the universal
predictions of RMT identify system-specific, non-random
properties of the network providing clues about the na-
ture of the underlying interactions. This result allows one
to distinguish genuine correlations in the network which
are not just due to noise.

II. EMPIRICAL RESULTS

A. Data studied

We use data from the French network ‘Renater’ [26]
which has about 2 million users and which consists of
about 30 interconnected routers (Fig. 1). Most Research
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institutes, technological, or educational institutions are
connected to Renater.

The data consist of the real exchange flow (sum of Ftp,
Telnet, Mail, Web browsing, etc.) between all routers
even if there is not a direct (physical) link between all
of them. For a connection (i, j) between routers i and j
(i 6= j), Fij(t) (in bytes per 5 minutes) is the effective
information flow at time t going out from i to j (the flow
going from i to k via j is excluded from Fij). For techni-
cal reasons, data for a few routers were not reliable and
we analyzed data for 26 routers which amounts in 26×26
matrices Fij(t) given for every sampling time scale τ = 5
minutes during a two weeks period. We also exclude from
the present study the internal flow Fii, and the nights for
which the flow is essentially due to machine activity. We
thus studied data for days (8am-6pm), which amounts
to a total of N = 26 × 25 = 650 different connections
given for L = 12 × 10 × 14days = 1680 time counts. We
choose as a measure of the magnitude of the time-series
fluctuations the growth rate defined as the logarithm of
the ratio of successive counts

gij(t) = log

[

Fij(t + τ)

Fij(t)

]

(1)

for t = 0, · · · , (L − 1)τ . This measure has several nice
properties. First, any multiplicative, time-independent
sample bias cancels in the ratio. Second, this measure has
a natural interpretation in terms of relative growth since
for a small increase gij(t) ' [Fij(t+∆t)−Fij(t)]/Fij(t) is
simply the relative increment. A large value of this quan-
tity reflects a large activity (i.e. a large flow variation),
while a small value corresponds to an almost constant
flow. This measure is thus independent from the volume
of information exchanged and thus does not eliminate
the ‘small’ routers. The study of volume flow exchange
will be published elsewhere [32] and in the present pa-
per the quantity g allows us to study more subtle effects
such as the activity of a regional router, independently
of its ‘size’ measured in terms of exchanged information
volume.

B. Correlation matrix

The simplest measure of correlations between differ-
ent connections (i, j) and (k, l) is the equal-time cross-
correlation matrix C which has elements

C(ij)(kl) =
〈gijgkl〉 − 〈gij〉〈gkl〉

σijσkl
(2)

where σij =
√

〈g2
ij〉 − 〈gij〉2 is the standard deviation of

the flow growth rate of the connection (i, j) and 〈· · ·〉
denotes a time average over the period studied. The cor-
relation matrix is real symmetric and its elements are

comprised between −1 (anti-correlated connections) and
1 (correlated connections), while a null value denotes sta-
tistical independence.

The quantities gij/σij have (by construction) a vari-
ance equal to one and a zero mean (for a sufficiently long
time). It is thus natural to compare our empirical re-
sults with a mutual independent time-series—the ‘null’
hypothesis—described by the correlation matrix

R =
1

L
AA

t (3)

where A (the so-called random Wishart matrix) is an
N × L matrix containing N times series of L random in-
dependent elements with zero mean and unit variance (At

denotes the transpose of A). Each element of R can be
written as R(ij)(kl) = 〈aijakl〉 where aij(t) is a time series
of independent elements with zero mean (〈aij〉 = 0) and
unit variance (σij = 1).

1. Eigenvalues

The probability distribution of the elements of C shows
that most on the elements are positive (Fig. 2) which
indicates a strong correlation among the whole network.
For comparison, the elements of R are distributed accord-
ing to a centered distribution with zero mean. We now
study the statistical properties of C by applying RMT
techniques. We first diagonalize C and obtain its eigen-
values λk (k = 1, · · · , N) which we sort from the largest
to the smallest. We then calculate the eigenvalue dis-
tribution and compare it with the analytical result for
a cross-correlation matrix generated from finite uncorre-
lated time series [28] in the limit N → ∞, L → ∞ where
Q = L/N ≥ 1 is fixed

Prm(λ) =
Q

2π

√

(λ+ − λ)(λ − λ−)

λ
(4)

with λ ∈ [λ−, λ+] and where

λ±(Q) = 1 + 1/Q ± 2/
√

Q (5)

The eigenvalue distribution of C is very different from
Equ. (4) which predicts a finite range of eigenvalues de-
pending on the ratio Q. The theoretical value is Q = 2.58
and we can reasonably fit the empirical curve with an ef-
fective value Q∗ = 1.1 (Fig. 3a). This effective value can
be explained as resulting from time correlations in the
traffic of the order of Q

Q∗
×τ ' 11 minutes. However, even

this fit cannot reproduce the large eigenvalues observed:
For Q∗ = 1.1 the theoretical eigenvalues are distributed
in the interval 2.17 × 10−3 ≤ λk ≤ 3.82 while few—a to-
tal of order 20—measured eigenvalues (not all shown on
the graph) are found above λ+(Q∗) = 3.82. The largest
eigenvalue is of order λ1 ' 200 namely approximately
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hundred times larger than the maximum eigenvalue pre-
dicted for uncorrelated time series. As we will see, the
empirical distribution of eigenvector components for the
large eigenvalues is ‘flat’, all components being of the
same order. This suggests that the largest eigenvalues
are associated with strong correlations among the net-
work.

We also calculate the distribution of the nearest-
neighbor spacings s = λk+1 − λk. We compare the em-
pirical distribution of nearest-neighbor spacings with the
RMT predictions for real symmetric random matrices.
This class of matrices shares universal properties with
the ensemble of matrices whose elements are distributed
according to a Gaussian probability measure—the Gaus-
sian orthogonal ensemble (GOE). We find good agree-
ment (Fig. 3b) between the empirical data and Wigner’s
surmise

PGOE(s) =
πs

2
exp

(

−π

4
s2

)

. (6)

which indicates a ‘level repulsion’ existing in our system
and means that the eigenvalues are correlated.

2. Eigenvectors and Inverse Participation Ratio

We now analyze the eigenvectors of C. We denote by
uk the eigenvector associated to the eigenvalue λk and if
we normalize the eigenvectors such that u2

k = N , it can
be shown that in the Wishart case the components u of
the eigenvectors are distributed according to the so-called
Porter-Thomas distribution

P (u) =
1√
2π

e−u2/2 (7)

In agreement with this result we find that eigenvec-
tors corresponding to most eigenvalues in the ‘bulk’ of
the spectrum (λk not too large) follow this prediction
(Fig. 4a).

On the other hand, eigenvectors with eigenvalues out-
side the bulk (λk ≥ λ+(Q∗)) show marked deviations
from the Gaussian distribution (Fig. 4b,c). In partic-
ular, the vector corresponding to the largest eigenvalue
λ1 deviates significantly from the Gaussian distribution
predicted by RMT (Fig. 4b). This eigenvector is the
signature of a collective behavior—the network itself—
for which all connections are correlated. This effect was
already observed in the framework of stock correlations,
the largest eigenvalue being in this case the entire market
[22,23,24].

The distribution of the components of an eigenvector
contains information about the number of connections
contributing to it. In order to distinguish between one
eigenvector with approximately equal components and
another with a small number of large components we use

the inverse participation ratio (IPR) introduced in the
context of localization theory [29,30]

Ik =
1

N2

N
∑

i=1

[uki]
4 , (8)

where uki, i = 1, . . . , N = 650 are the components of
eigenvector uk. When the components of a vector are of
the same order and distributed according to Equ. (7), the
average IPR is small and equal to 3/N whereas a vector
with only few non zero components leads to a IPR of
order unity. The quantity Υk = 3/Ik is thus a measure
of the number of vector components significantly differ-
ent from zero. We compared Υk for our empirical results
and for uncorrelated time series with the same values of
(N, L) (Fig. 5). For the latter case, Υk has small fluctua-
tions around N = 650 indicating that all the vectors are
extended [30] which means that almost all connections
contribute to them. On the other hand, the empirical
data show deviations of Υk from N for the smallest and
largest eigenvalues (except for the largest eigenvalue). In
these cases, the number of contributing connections is
much smaller than N ranging from a few connections to
a few hundreds. These deviations of few orders of magni-
tude of Ik from its average suggests that the vectors are
localized [30] and that only a few connections contribute
to them. As it will be illustrated on a simple example
in the next section, these results have a clear meaning in
the case of large eigenvalues for which the connections are
correlated. In addition, it was also shown ( [24] and see
below) that strongly correlated pairs of routers (which
correspond to large components in the eigenvectors) also
appear with a relative negative sign in the eigenvector
for small eigenvalues. This explains why the lower band
edge also displays localized vectors but there is no clear
connection with the spectrum observed in localization in
electronic systems [30].

In addition, our empirical results exhibit ‘quasi-
extended’ states in the center of the band. These states
consist essentially of a group of ' 300− 400 connections
corresponding to eigenvalues of order 0.2 − 0.4.

The physical picture which emerges is thus the fol-
lowing. The largest eigenvalue has an eigenvector which
Υk=1 is of order N and thus represents the whole net-
work. The eigenvectors which correspond to eigenvalues
which deviate from pure random matrix theory corre-
spond to genuine correlations in the network. We have
shown that these ‘deviating’ eigenvectors (of the order
of 20) have a small value of Υk which means that these
important correlations are localized and that a relatively
small number of connections concentrate most of the ac-
tivity [31].
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3. Non-Universal Properties: Active Centers

The detail of the components of the ‘deviating’ eigen-
vectors give us information about the important correla-
tions in the network. In particular, the largest compo-
nents of the eigenvectors correspond to the most corre-
lated connections. This can be seen on the simple follow-
ing example of a 3 × 3 correlation matrix





1 c 0
c 1 c′

0 c′ 1



 (9)

where c (resp. c′) denotes the strength of the (1, 2) (resp.
(2, 3)) correlation. If we denote the ratio of the correla-
tion strengths η = c′/c, the eigenvectors u1, u2, and u3

are respectively





1
√

1 + η2

η



 ,





−η
0
1



 ,





1

−
√

1 + η2

η



 , (10)

and correspond respectively to the eigenvalues (sorted in
decreasing order)

1 + c
√

1 + η2 , 1 , 1 − c
√

1 + η2 (11)

We thus see on this simple example that the components
of the eigenvector u1 (corresponding to the largest eigen-
value) identify the most correlated indices: For η � 1,
u1 ' (1, 1, 0) and for η � 1 one obtains u1 ∝ (0, 1, 1).

This remark shows that the eigenvectors are indeed im-
portant for identifying the most correlated connections in
the network. We note that the large correlations are also
reflected in the components—but with a relative minus
sign—of the eigenvectors for small eigenvalues.

In the case of Renater, we have seen in the previous
section that all the components of u1 are positive which
indicates a correlation among the whole network. Even
if all the components of u1 indicate correlations exist-
ing in the network, the simple example above shows that
its largest components correspond to the most correlated
connections. We thus looked at the largest components
of u1. A first fact is that a connection (i, j) is always
(strongly) correlated with the connection (j, i). This
result is not surprising since for most operations (Web
browsing, Telnet, etc), there is always a ‘outgoing’ flow
which is a significant part of the ‘incoming’ flow.

In order to look for other causes of correlations we plot
on Fig. (6) the histogram of occurrences h(i) of the router
i in the set of the n most correlated connections (i, j)
which are given by the first n components of the eigen-
vector u1 corresponding to the largest eigenvalue. We
compared the empirical results with the control case for
increasing values of n (for n approaching the total num-
ber of components N = 650 all the connections appear
and the histogram of occurrences is flat). We observe

marked differences between these two cases. In particu-
lar, in the control case the histogram tends to be uniform
while for Renater we observe persistent peaks. On the
last plot (Fig. 6c), it is apparent that there are still some
fluctuations in the control case but much less than in the
empirical one. The persistency of peaks and the fact that
they appear to be much larger than the average value
suggest that it is very unlikely that they are just fluctu-
ations due to noise. Therefore, not all routers appear in
the most correlated connections and the peaks can thus
be identified as important ‘active centers’. These cen-
ters are exchanging information with many other routers
thereby inducing correlations between these connections.

It is interesting to note that occurrence peaks also ap-
pear in the components of the other deviating eigenvec-
tors and would thus also correspond to active centers but
at a lower level of correlation.

At this stage, we would like to emphasize that this
analysis highlights active center independently of the vol-
ume of information exchanged. Indeed, in a volume flow
analysis the ‘small’ routers even very active are com-
pletely hidden by the ‘big’ routers which are receiving
and emitting huge amounts of bytes.

III. CORRELATIONS AND SELF-SIMILARITY
IN THE WWW

The Internet is an example of a complex network which
shows existence of a collective behavior such as a phase
transition to a congested regime [3]. An important dis-
covery was also the power-law decay of time correlations
[2]. This self-similarity is usually explained on the basis
of underlying distributions of WWW document sizes, ef-
fect of user ‘think time’ and the addition of many such
effects in a network [17].

The present study shows that strong correlations be-
tween different connections exist in the traffic network.
This result together with the existence of a phase tran-
sition, the existence of a power law decay of time corre-
lation suggests that the large-scale data traffic dynamics
could be described by a set of simple coupled stochastic
differential equation, such as the Langevin equations with
random interactions [33]. The equation for the Internet
activity on a given connection (i, j) would thus be

∂gij

∂t
= F (gij(t)) + εij(t) +

∑

kl

J(ij)(kl)gkl(t) (12)

where the function F is usually expanded for small g as
[34]

F (g) ' −rg − ug3 (13)

and describes the relaxation of a single isolated connec-
tion. The random noise ε is associated to the effect of
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users and the quantity J(ij)(kl) is the coupling between
connections (ij) and (kl). In the absence of interaction,
the correlation function < g(t)g(t+ τ) > decreases expo-
nentially with a typical correlation time of order 1/r (for
u = 0). When the coupling is strong enough, the system
described by Equ. (12) undergoes a transition to an or-
dered state where all g’s are centered around a non-zero
value. At the transition point the correlation function is
decaying as a power law [34].

In this model [Equ. (12)], the observed self-similarity
in time is a consequence of the strong correlation existing
in the network. This is in contrast with previous studies
which explained the self-similarity as an effect of existing
local power law distribution (such as the file size distri-
bution). However, more data are needed for testing this
hypothesis and the validity of Equ. (12) for the Internet
traffic.

IV. CONCLUSIONS

In summary, the largest part of the correlation ma-
trix of connections is random but also contains statistical
information distinct from pure noise. The eigenvectors
which correspond to eigenvalues outside of the RMT pre-
dictions contain information about genuine traffic corre-
lation. In particular, the largest components of eigenvec-
tor u1 (which corresponds to the largest eigenvalue) indi-
cate the most correlated connections. We found different
origins for the observed correlations. First, a connection
(i, j) is always strongly correlated with (j, i) which is ex-
pected since for each process—such as web browsing for
example—information is exchanged in both directions.
Second, it appears that in the set of the strongly cor-
related connections there is only a small number of dif-
ferent routers which participate in different connections
thereby inducing correlations. This support the idea of
the existence of active centers which are either very ac-
tive or very visited. More work and data—on larger space
and time scales—are needed in order to understand more
thoroughly the existence of such centers which seem to
play an important role in the network traffic.

The approach presented in this study thus seems to
allow one to extract relevant correlations between differ-
ent connections and might have potential applications to
traffic management and optimization. In particular, this
analysis focus on activity independently of the volume
of information exchanged and can thus reveal some very
active routers which are usually hidden by ‘big’ routers
exchanging very large flows.

Finally, the existence of strong correlations together
with the existence of a phase transition and power-law
decaying autocorrelation function suggest that the Inter-
net traffic is similar to a spin glass close to the criti-
cal point. In this hypothesis, the self-similarity appears

naturally as the result of a collective behavior without
resorting to pre-existing power laws.
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discussions. This work was supported by the Equipe Re-
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FIG. 1. Map of the Renater network. There is a total
of about 30 interconnected routers (of which 26 are effec-
tively studied). We show on this map the physical connec-
tions. The measured data consist in a flow matrix Fij(t)
(with t = τm, m = 0, · · · , L − 1 and i, j = 1, · · · , 26)
which gives the effective flow exchange between routers i
and j. For more details on this network, see the web page
http://www.renater.fr and for an animated version of flows,
see http://barthes.ens.fr/metrologie/Renater01.
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FIG. 2. Probability distribution for the correlation coeffi-
cient calculated from 5-minutes flows in the Renater network
for a 14 days period. The average value is positive indicating
strong correlations among the whole network.
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FIG. 3. (a) The probability density of the eigenvalues of
the normalized cross-correlation matrix C for the 650 con-
nections for a 2-weeks period. The results are reasonably
fitted by the analytical result obtained for cross-correlation
matrices generated from uncorrelated time series (solid line,
obtained from Equ. 4 with Q∗ = 1.1). There are however
very large eigenvalues (not shown), the largest one being of
order 200. (b) Nearest-neighbor spacing distribution of the
eigenvalues of C after unfolding using the Gaussian broaden-
ing procedure [27]. The solid line is the RMT prediction for
the spacing distribution for the Gaussian orthogonal ensemble
(GOE).
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FIG. 4. Eigenvector component distribution (a) For eigen-
values in the center of the spectrum. In this case, the em-
pirical results are in agreement with the results of RMT
which is the Porter-Thomas distribution represented by a
solid line. (b,c) For large eigenvalues there is a clear devi-
ation compared to RMT predictions represented by the solid
line (Porter-Thomas distribution). For the largest eigenvalue,
most of the components is non-zero and positive which indi-
cates correlations among the whole network.
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FIG. 5. Reciprocal inverse participation ratio for each of
the 650 eigenvectors (sorted for decreasing eigenvalues). As
a control case, we show the corresponding result for uncor-
related independent time series of the same length as the
data. Empirical data show small values at both edges of the
spectrum, whereas the control shows only small fluctuations
around the average value 〈3/I〉 = N = 650.
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FIG. 6. Number of occurrences of routers in the n
most correlated connections (There is a total of 26 routers
i = 1, · · · , 27, the router 24 is excluded of the present study
for technical reasons). In each plot, we compared the em-
pirical results with the control case (histogram in red). The
arrows indicate the two most frequent routers for Renater. In
cases (a) n = 30 and (b) n = 50, it is clear that not all routers
are participating equally. (c) Case n = 100. The control case
still fluctuates around its average (which is 200/26 ' 7.70)
but much less than the empirical case. This fact and the
observed persistency for increasing n suggest that it is very
unlikely that the empirical peaks are just fluctuations due to
noise. These peaks corresponds probably to routers which are
very active and which are exchanging information with many
other routers, thereby inducing correlations in the network.
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