Interweaving architecture and ecology A theoretical perspective

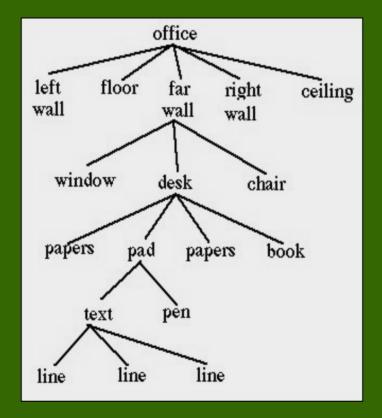
Dr: What can architecture learn

from ecological systems?

Why can the study of ecology be beneficial for architecture?

- 1. Practically (sustainability)
- 2. Conceptually (connectivity, flexibility, dynamics)

The distinction between the artificial and the natural must lie not in their source – human or not – but in their characteristics, in the way they relate to the world around them (Postrel, 1998: 148)

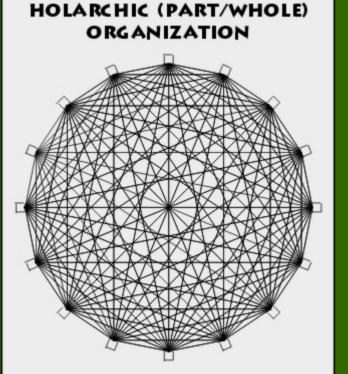

Ecology – the relation of organisms to one another and to their physical surroundings

Comparison between mechanism and organism (Elisabet Sahtouris, 2000)

Allopoietic Mechanism

Is assembled
Rules given
Hierarchic
Is reinvented
Is repaired

Architecture



Comparison between mechanism and organism (Elisabet Sahtouris, 2000)

Allopoietic Mechanism

-Is assembled -Rules given -Hierarchic -Is reinvented -Is repaired

Architecture

Autopoietic Organism

- -Grows itself
- -Rules itself
- -Holarchic
- -Evolves
- -Repairs itself

Ecological systems

Three ecological principles which define the organization of living systems:

1. Fluctuations – the action or condition of passing more or less rapidly and suddenly from one state to another.

2. Stratification – the formation, by natural process, of strata or layers one above the other.

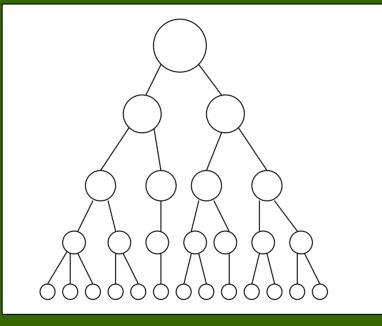
3. Interdependence – the fact or condition of depending each upon the other; mutual dependence.

1. Fluctuations – the action or condition of passing more or less rapidly and suddenly from one state to another.

Dynamics Adaptation -----> Resilience

a) Self-maintenance: self-renewal, healing, homeostasis, adaptation.
b) Self-transcendence: learning, development, evolution.

Embryo separated from the Yolk


Embryo at 4-cell stage

Embryo at 64-cell stage

Blue king crab embryo: embryo formation process as an evolutionary process of self-transcendence in organisms

2. Stratification – the formation, by natural process, of strata or layers one above the other.

The organization of complexity

Hierarchy Top-down

All components exist in order to maintain an overall 'goal'. The 'goal' of individual components is irrelevant or nonexistent.

2. Stratification – the formation, by natural process, of strata or layers one above the other.

The organization of complexity

Holarchy Bottom-up Organisms Organs Tissues Cells Molecules

Hierarchy Top-down

All components exist in order to maintain an overall 'goal'. The 'goal' of individual components is irrelevant or nonexistent.

Each individual component is a 'subsystem', is a whole in itself. All of the subsystem's individual 'goals' function together to maintain an overall goal of the bigger system.

Emergent properties – properties that occur as a result of the interactions between the components in the system.

3. Interdependence – the fact or condition of depending each upon the other; mutual dependence.

Feedback loops:

- -Positive feedback: recurrent influence reinforces initial change.
- -Negative feedback: reaction is opposite to initial action.

Second order cybernetics:

- -The observer is part of the system.
- -The system is a vehicle for information, meaning is generated by the observer.

"The connectivity drives the system: in order to create the whole, the connections grow and proliferate, using the components as anchoring nodes for a coherent network" (Salingaros, 2004: 48).

Fluctuations Stratification Interdependence

P Designing places

Three possible methods of application of the ecological principles in architecture:

- Metaphorically using ecological principles as a general concept that can enhance the meaning of architecture.
- Analogically certain aspects of the ecological principles can be compared to certain aspects in architecture and by this reveal differences and similarities.
- Literally a direct analysis and transformation of the ecological principles into architectural systems.

Bibliography:

- 1. Bunge, M. (1969). The metaphysics, epistemology and methodology of levels. *Hierarchical structures.* Whyte, Wilson & Wilson (Eds.), American Elsevier, New-York.
- 2. Capra, F. (1997). The web of life. HarperCollins, London.
- 3. Foerster, V.H. (1984). Observing systems. California, Intersystems Publications.
- 4. Heylighen, F. (1997). *The science of self–organization and adaptivity*. http://pespmcl.vub.ac.be/Papers/EOLSS–Self–Organiz.pdf. 2004
- 5. Postrel, V. (1998). The future and its enemies. The free Press, New-York.
- 6. Sahtouris, E. (2000). Living systems, the internet and the human future. *Planet work, global ecology and information technology*. San-Francisco, CA.
- 7. Salingaros, N. (2004). Anti-architecture and deconstruction. Umbau-Verlag, Germany.

Photos- <u>http://christojeanneclaude.net/</u>

Thanks to Prof. Jeremy Till (PhD supervisor)